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Preface

Mark Twain's autobiographyTNA10] modestly questions his own reporting of the
numbers of hours per day he sat down to write, and of the nuoflveords he wrote in that
time, saying

Figures often beguile me, particularly when | have the agisg of them
myself; in which case the remark attributed to Disraeli wbaften apply
with justice and force:

“There are three kinds of lies: lies, damned lies, and statst’

[emphasis added]

Here Twain gives credit for this pithy tripartite classitian of lies to Benjamin Dis-
raeli, who was Prime Minister of the United Kingdom in 186&der Queen Victoria),
although modern scholars nd no evidence that Disraeli wesactual originator of the
phrase. But whoever actually deserves credit for the phittdees seem that statistics are
often used to conceal the truth, rather than to reveal it. 8ohnso, for example, that the
wonderful bookHow to Lie with Statistics [Huf93], by Darrell Huff, gives many, many
examples of misused statistics, and yet merely scratcleesutifiace.

We contend, however, that statistics are not a type of liesdibher, when used carefully,
are analternativeto lying. For this reason, we use “or” in the title of this bookhere
Twain/Disraeli used “and,” to underline how we are thinkofgtatistics, correctly applied,
as standing in opposition to lies and damned lies.

But why use such a complicated method of telling the truthtasssics, rather than,
say, telling a good story or painting a moving picture? Thewaar, we believe, is simply
that there are many concrete, speci c questions that huimaresabout the world which are
best answered by carefully collecting some data and usingckest amount of mathematics
and a fair bit of logic to analyze them. The thing about theeB8iic Method is that it just
seems to work. So why not learn how to use it?

Learning better techniques of critical thinking seemsipalarly important at this mo-
ment of history when our politics in the United States (arsd@ehere) are so divisive, and
different parties cannot agree about the most basic factst 8f commentators from all
parts of the political spectrum have speculated about tipadtnof so-calledake newsn
the outcomes of recent recent elections and other poldiebates. It is therefore the goal

ix
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of this book to help you learRlow to Tell the Truth with Statistics and, therefore, how
to tell when others are telling the truth ... or are fakingrtteews.”



Part 1

Descriptive Statistics



The rst instinct of the scientist should be to organize ¢altg a question of interest,
and to collect some data about this question. How to colleotiglata is a real and im-
portant issue, but one we discuss later. Let us instead a&skurthe moment that we have
some data, good or bad, and rst consider what to do with Hndam)articular, we want to
describe them, both graphically and with numbers that sumzeaome of their features.

We will start by making some basic de nitions of terminologywvords likeindividual ,
population, variable, mean median, etc. — which it will be important for the student
to understand carefully and completely. So let's brie yaliss what a de nitionis, in
mathematics.

Mathematical de nitions should be perfectly precise bessathey do nodescribe
something which is observed out there in the world, sincé siescriptive de nitions might
have fuzzy edges. In biology, for example, whether a viruissidered “alive” could be
subject to some debate: viruses have some of the charéictedoslife, but not others. This
makes a mathematician nervous.

When we look at math, however, we should always know exadtlighvobjects satisfy
some de nition and which do not. For example,@ren numbeis a whole number which
is two times some other whole number. We can always tell varetbme numben is
even, then, by simply checking if there is some other nunkibier which the arithmetic
statemenh = 2Kk is true: if so,n is even, if notn is not even. If you claim a numberis
even, you need just state what is the corresponkijrifclaim it is not even, you have to
somehow give a convincing, detailed explanation (dare et “proof”) that such ak
simply does not exist.

So it is important to learn mathematical de nitions cargfulo know what the criteria
are for a de nition, to know examples that satisfy some déan and other examples which
do not.

Note, nally, that in statistics, since we are using mathéosain the real world, there
will be some terms (likendividual andpopulation) which will not be exclusively in the
mathematical realm and will therefore have less perfectiyhmmatical de nitions. Never-
theless, students should try to be as clear and precise siblgos

The material in this Part is naturally broken into two casegpending upon whether we
measure a single thing about a collection of individuals emmake several measurements.
The rst case is calledne-variable statistics and will be our rst major topic. The second
case could potentially go as far amilti-variable statistics, but we will mostly talk about
situations where we makigvo measurements, our second major topic. In this case of
bivariate statistics, we will not only describe each variable separately (botpgrcally

The word “data” is really a plural, corresponding to the silag “datum.” We will try to remember to
use plural forms when we talk about “data,” but there will leepenalty for (purely grammatical) failure to
do so.
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and numerically), but we will also describe their relatioips graphically and numerically
as well.






CHAPTER 1

One-Variable Statistics: Basics

1.1. Terminology: Individuals/Population/Variables/Sanples

Oddly enough, it is often a lack of clarity abomho[or whaf you are looking atvhich
makes a lie out of statistics. Here are the terms, then, tp &eaight:

DEFINITION 1.1.1. The units which are the objects of a statistical sargycalled the
individuals in that study, while the collection of all such individuatsdalled thepopula-
tion of the study.

Note that while the term “individuals” sounds like it is talky about people, the indi-
viduals in a study could be things, even abstract thingsdueants.

ExamMpPLE 1.1.2. The individuals in a study about a democratic eleatnght bethe
voters Butif you are going to make an accurate prediction of whowith the election, itis
important to be more precise about what exactly is the paojpulaf all of those individuals
[voters] that you intend to study, butatl eligible voters all registered votersthe people
who actually votegetc.

ExampLE 1.1.3. If you want to study if a coin is “fair” or not, you woulg it re-
peatedly. The individuals would then hbies of that coin, and the population might be
something likeall the ips ever done in the past and all that will every be éadn the fu-
ture. These individuals are quite abstract, and in fact it is isgilnle ever to get your hands
on all of them (the ones in the future, for example).

EXAMPLE 1.1.4. Suppose we're interested in studying whether doiagerhomework
helps students do better in their studies. So shouldn'tttiiduals be the students? Well,
which students? How about we look only at college studentsicicollege students? OK,
how about students at 4-year colleges and universitiegitlthited States, over the last ve
years — after all, things might be different in other cowegrand other historical periods.

Wait, a particular student might sometimes do a lot of hontkvemd sometimes do
very little. And what exactly does “do better in their stusfienean? So maybe we should
look at each student in each class they take, then we can tdb& homework they did for
that class and the success they had in it.

Therefore, the individuals in this study would mlividual experiences that students
in US 4-year colleges and universities had in the last vergeand population of the study

5



6 1. ONE-VARIABLE STATISTICS: BASICS

would essentially be the collection of all the names on aslrosters of courses in the last
ve years at all US 4-year colleges and universities.

When doing an actual scienti ¢ study, we are usually notreséed so much in the
individuals themselves, but rather in

DEFINITION 1.1.5. Avariable in a statistical study is the answer of a question the
researcher is asking about each individual. There are tp@sty

A categorical variableis one whose values have a nite number of possibilities.
A gquantitative variable is one whose values are numbers (so, potentially an in -
nite number of possibilities).

The variable is something which (as the name sagsggs in the sense that it can have
a different value for each individual in the population faligh that is not necessary).

EXAMPLE 1.1.6. In Examplé€1.112, the variable most likely wouldvidgo they voted
for, a categorical variable with only possible values “Mickepide” or “Daffy Duck” (or
whoever the names on the ballot were).

EXAMPLE 1.1.7. In Examplé1.113, the variable most likely wouldvideat face of the
coin was facing up after the ipa categorical variable with values “heads” and “tails.”

ExAamMPLE 1.1.8. There are several variables we might use in Examgld.1.0ne
might behow many homework problems did the student do in that codsether could
be how many hours total did the student spend doing homeworktbaewhole semester,
for that course Both of those would be quantitative variables.

A categorical variable for the same population would\det letter grade did the stu-
dent get in the coursevhich has possible valuds A-, B+, ...,D-, F.

In many [most?] interesting studies, the population is tvge for it to be practical to
go observe the values of some interesting variable. Sorastiis not just impractical, but
actually impossible — think of the example we gave of all tigs of the coin, even in the
ones in the future. So instead, we often work with

DEFINITION 1.1.9. Asampleis a subset of a population under study.

Often we use the variablg to indicate the size of a whole population and the variable
n for the size of a sample; as we have said, usuakyN .

Later we shall discuss how to pick a good sample, and how mechan learn about
a population from looking at the values of a variable of iagtronly for the individuals in
a sample. For the rest of this chapter, however, let's jussic®r what to do with these
sample values.
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1.2. Visual Representation of Data, I: Categorical Variabés

Suppose we have a population and variable in which we anested. We get a sample,
which could be large or small, and look at the values of thevauable for the individuals
in that sample. We shall informally refer to this collectioivalues as a@ataset

In this section, we suppose also that the variable we ararigalt is categorical. Then
we can summarize the dataset by telling which categoridakgadid we see for the indi-
viduals in the sample, and how often we saw those values.

There are two ways we can make pictures of this informatian chartsandpie charts

1.2.1. Bar Charts I: Frequency Charts. We can take the values which we saw for
individuals in the sample along tixeaxis of a graph, and over each such label make a box
whose height indicates how many individuals had that valiefrequency of occurrence
of that value.

This is called aar chart. As with all graphs, you shouldiways label all axesThe
x-axis will be labeled with some description of the variableguestion, the/-axis label
will always be “frequency” (or some synonym like “count” antimber of times”).

ExampLE 1.2.1. In Example1.117, suppose we took a sample of congisfithe next
10 ips of our coin. Suppose further that 4 of the ips came ugalds — write it as “H” —
and 6 came up tails, T. Then the corresponding bar chart woaldlike

10 T T

Frequency

Face showing on coin

1.2.2. Bar Charts Il: Relative Frequency Charts. There is a variant of the above
kind of bar chart which actually looks nearly the same buhges the labels on theaxis.
That s, instead of making the height of each bar be how mamggieach categorical value
occurred, we could make it lvehat fraction of the sample had that categorical vatuthe
relative frequency. This fraction is often displayed as a percentage.
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EXAMPLE 1.2.2. The relative frequency version of the above bar ¢ch&xampld 1.211
would look like

Relative frequency

Face showing on coin

1.2.3. Bar Charts Ill: Cautions. Notice that with bar charts (of either frequency or
relative frequency) the variable values along xhaxis can appear in any order whatso-
ever This means that any conclusion you draw from looking at thedhart must not
depend upon that order. For example, it would be foolish yaisat the graph in the above
Examplé 1.2.11 “shows and increasing trend,” since it wouddkenjust as much sense to put
the bars in the other order and then “show a decreasing trebdth are meaningless.

For relative frequency bar charts, in particular, note thattotal of the heights of all
the bars must bé (or 100%). If it is more, something is weird; if it is less, some datsh
been lost.

Finally, it makes sense for both kinds of bar charts fontfais to run from the logical
minimum to maximum. For frequency charts, this means it khgo from 0 to n (the
sample size). For relative frequency charts, it should gof to 1 (or 100%). Skimping
on how much of this appropriateaxis is used is a common trick to lie with statistics.

EXAMPLE 1.2.3. The coin we looked at in Example 1]2.1 and Exarhpl€ic@uld
well be a fair coin — it didn't show exactly half heads and halfs, but it was pretty close.
Someone who was trying to claim, deceptively, that the caa not fair might have shown
only a portion of they axis, as
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0.7 T T

0.65 - -

0.6

0.55

0.5

0.45

Relative frequency

0.4

0.35

0.3

Face showing on coin

This is actually, in a strictly technical sense, a correepyr But, looking at it, one might
conclude that T seems to occur more than twice as often as tHesmwin is probably not
fair ... until a careful examination of thg-axis shows that even though the bar for T is
more than twice as high as the bar for H, that is an artifactosd much of they-axis is
being shown.

In summary, bar charts actually don't have all that much nsophisticated statistics,
but are extremely common in the popular press (and on webaite so on).

1.2.4. Pie Charts. Another way to make a picture with categorical data is to bee t
fractions from a relative frequency bar chart, but not fa tieights of bars, instead for the
sizes of wedges of a pie.

EXAMPLE 1.2.4. Here's a pie chart with the relative frequency dadaffExamplé 1.2]2.
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Pie charts are widely used, but actually they are almostrreeg®od choice. In fact,
do an Internet search for the phrase “pie charts are bad’reard will be nearly 3000 hits.
Many of the arguments are quite insightful.

When you see a pie chart, it is either an attempt (misguidemgh) by someone to
be folksy and friendly, or it is a sign that the author is quitesophisticated with data
visualization, or, worst of all, it might be a sign that thetear is trying to use mathematical
methods in a deceptive way.

In addition, all of the cautions we mentioned above for bartshof categorical data
apply, mostly in exactly the same way, for pie charts.
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1.3. Visual Representation of Data, Il: Quantitative Variables

Now suppose we have a population apéntitativevariable in which we are interested.
We get a sample, which could be large or small, and look at sh@eg of the our variable
for the individuals in that sample. There are two ways we tendake pictures of datasets
like this: stem-and-leaf plotandhistograms

1.3.1. Stem-and-leaf PlotsOne somewhat old-fashioned way to handle a modest
amount of quantitative data produces something betweeplgialist of all the data val-
ues and a graph. It's not a bad technique to know about in casdnas to write down a
dataset by hand, but very tedious — and quite unnecessamyeifises modern electronic
tools instead — if the dataset has more than a couple dozeasvalhe easiest case of this
technique is where the data are all whole numbers in the r@ng89. In that case, one
can take off the tens place of each number — call itstieen— and put it on the left side of
a vertical bar, and then line up all the ones places — eacle&f a to the right of that stem.
The whole thing is called stem-and-leaf plotor, sometimes, just stemplot.

It's important not to skip any stems which are in the middi¢hef dataset, even if there
are no corresponding leaves. It is also a good idea to allp@ated leaves, if there are
repeated numbers in the dataset, so that the length of thefrteaves will give a good
representation of how much data is in that general group taf eieues.

ExaMPLE 1.3.1. Here is a list of the scores of 30 students on a stHiktst:

86 80 25 77 73 76 88 90 69 93
90 83 70 73 73 70 90 83 71 95
40 58 68 69 100 78 87 25 92 74

As we said, using the tens place (and the hundreds place b$aw¢he data valud 00 as
the stem and the ones place as the leaf, we get

TaBLE 1.3.1.1. Stem-and-leaf plot of students' scores, Kgy:= 17

Stem| Leaf

10| 0

000235
033678
0013334678
899

8

0

N Wb O1 OO N 0 O

55
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One nice feature stem-and-leaf plots have is thay contain all of the data valuges
they do not lose anything (unlike our next visualization Inoet, for example).

1.3.2. [Frequency] Histograms.The most important visual representation of quanti-
tative data is distogram. Histograms actually look a lot like a stem-and-leaf platept
turned on its side and with the row of numbers turned into &icadrbar, like a bar graph.
The height of each of these bars would be how many

Another way of saying that is that we would be making bars wHesghts were deter-
mined by how many scores were in each group of ten. Note tbestdlia question of into
which bar a value right on the edge would couaty.,does the data valug0 count in the
bar to the left of that number, or the bar to the right? It ddesttually matter which side,
but it is important to state which choice is being made.

ExXAMPLE 1.3.2. Continuing with the score data in Exaniple 1.3.1 arttinmuall data
valuesx satisfying20 x < 30in the rst bar, valuex satisfying30 x < 40in the
second, values satisfyingd0 x < 50in the secondetc.— that is, put data values on the
edges in the bar to the right — we get the gure

Scores Histogram with Binwidth 10
12 T \ T T T T T T

10 B

Frequency
[=2]
T
|

0

10 20 30 40 50 60 70 80 90 100 110

Score

Actually, there is no reason that the bars always have tobertiés wide: it is important
that they are all the same size and that how they handle trecadgs (whether the left or
right bar gets a data value on edge), but they could be any ¥i&ecall the successive
ranges of thex coordinates which get put together for each bar the célied or classes
and it is up to the statistician to chose whichever bins — ehieey start and how wide they
are — shows the data best.

Typically, the smaller the bin size, the more variation {s®n) can be seen in the bars
... but sometimes there is so much variation that the resalins to have a lot of random
jumps up and down, like static on the radio. On the other hasidg a large bin size makes
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the picture smoother ... but sometimes, it is so smooth that kttle information is left.
Some of this is shown in the following

ExAMPLE 1.3.3. Continuing with the score data in Example 1.3.1 and using the
bins withx satisfyingl0 x < 12 thenl2 x < 14, etc, we get the histogram with bins
of width 2:

Scores Histogram with Binwidth 2
5 T T T T T T T

Frequency

If we use the bins witlx satisfyingl0 x < 15 thenl5 x < 20, etc, we get the
histogram with bins of width 5:

Scores Histogram with Binwidth 5
9 T T T T

Frequency

2L
1+ .
0 I

30 40 50 60 7

20 0 80 90 100 110

Score

If we use the bins with satisfying20 x < 40, then40 x < 60, etc, we get the
histogram with bins of width 20:
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Scores Histogram with Binwidth 20
14

12 - B

=
T
I

Frequency

20 40 60 80 100 120

Score

Finally, if we use the bins witlt satisfying0 x < 50, then50 x < 10Q and then
100 x < 150 we get the histogram with bins of width 50:

Scores Histogram with Binwidth 50
30 T T T T

25 B

20 - B

Frequency
—
&
T
1

10 —

Score

1.3.3. [Relative Frequency] Histograms.Just as we could have bar charts with abso-
lute ®1.2.1) or relative1.2.2) frequencies, we can do the same for histograms. Aliove
X1.3.2, we made absolute frequency histograms. If, insteadjivide each of the counts
used to determine the heights of the bars by the total sang#e \se will get fractions
or percents +elative frequencies. We should then change the label orythgis and the
tick-marks numbers on theaxis, but otherwise the graph will look exactly the samet(as
did with relative frequency bar charts compared with absditequency bar chars).

EXAMPLE 1.3.4. Let's make the relative frequency histogram comwesing to the
absolute frequency histogram in Exampple 1.3.2, based odatefrom Examplgé 1.3.1 —
all we have to do is change the numbers used to make heighte bftrs in the graph by
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dividing them by the sample size, 30, and then also changg-éxis label and tick mark
numbers.

Scores Relative Frequency Histogram with Binwidth 10
0.4 T T T T T T T

035 - B

03 | B

0.25 - B

0.2 B

Frequency

0.15 =

01 =

0.05 —

o

10 20 30 40 50 60 70 80 90 100 110

Score

1.3.4. How to Talk About Histograms. Histograms of course tell us what the data
values are — the location along thevalue of a bar is the value of the variable — and how
many of them have each particular value — the height of theédliarhow many data values
are in that bin. This is also given a technical name

DEFINITION 1.3.5. Given a variable de ned on a population, or at leasa@ample,
thedistribution of that variable is a list of all the values the variable atjuakes on and
how many times it takes on these values.

The reason we like the visual version of a distribution, isgdgram, is that our visual
intuition can then help us answer general, qualitative goes about what those data must
be telling us. The rst questions we usually want to answeckjy about the data are

What is theshapeof the histogram?
Where is itscentef?
How muchvariability [also calledspread does it show?

When we talk about the general shape of a histogram, we oftethe terms

DEFINITION 1.3.6. A histogram isymmetric if the left half is (approximately) the
mirror image of the right half.

We say a histogram iskewed leftif the tail on the left side is longer than on the right.
In other words, left skew is when the left half of the histagra half in the sense that the
total of the bars in this left part is half of the size of theatst — extends farther to the left
than the right does to the right. Conversely, the histogmaskeéwed right if the right half
extends farther to the right than the left does to the left.
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If the shape of the histogram has one signi cant peak, thesayat isunimodal, while
if it has several such, we say itmsultimodal.

It is often easy to point to where the center of a distributaoks likeit lies, but it is
hard to be precise. Itis particularly dif cult if the histogm is “noisy,” maybe multimodal.
Similarly, looking at a histogram, it is often easy to saysit‘quite spread out” or “very
concentrated in the center,” but it is then hard to go beybigdgeneral sense.

Precision in our discussion of the center and spread of @elatall only be possible in
the next section, when we work with numerical measures cftlieatures.
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1.4. Numerical Descriptions of Data, I: Measures of the Cermtr

Oddly enough, there are several measures of central tepdesevays to de ne the
middle of a dataset are called. There is different work todrgedo calculate each of them,
and they have different uses, strengths, and weaknesses.

For this whole section we will assume we have collectedimerical values, the values
of our quantitative variable for the sample we were ableudt\When we write formulae
with these values, we can't give them variable names thatlike a; b; c;:::; because we
don't know where to stop (and what would we dmifvere more than 267?). Instead, we'll
use the variables;; X,; : : :; X, to represent the data values.

One more very convenient bit of notation, once we have staséing an unknown
number @) of numbers<y; x,; :::; X, IS a way of writing their sum:

DEFINITION 1.4.1. If we hei__yen numbers which we \igrltal; 1l Xn, then we use the
shorthandsummation notation  X; to represent the sum x; = x; + + Xp.

EXAMPLE 1.4.2. If our dataset werkl; 2; 17, 3:1415 3=4g, thenn would be 5 and
the variablesy;:::; x5 would be de ned with valuex; = 1, X, = 2, X3 = 17, X4 =
3:1415 andxs = 3=4. P
In additiorH, we would have X; = X1+ Xo+ X3+ Xa+ X5 = 1+2+17 3:1415+34 =
17:6085

1.4.1. Mode. Let's rstdiscuss probably the simplest measure of cerigatlency, and
in fact one which was foreshadowed by terms like “unimodal.”

DEFINITION 1.4.3. Amodeof a datasexy;:::; X, of n numbers is one of the values
X; which occurs at least as often in the dataset as any othez.valu

It would be nice to say this in a simpler way, something likiee'tmode is the value
which occurs the most often in the dataset,” but there mayeaat single such number.

EXAMPLE 1.4.4. Continuing with the data from Example 113.1, it isye@ssee, look-
ing at the stem-and-leaf plot, that both 73 and 90 are modes.

Note that in some of the histograms we made using these da@ifferent bin widths,
the bins containing 73 and 90 were of the same height, whoéhers they were of different
heights. This is an example of how it can be quite hard to se& lmstogram where the
mode is... or where the moslare

: . oo P . P :
1Sometimes you will see this written instead’;, x; . Thinkofthe“ [, " asa little computer program

which withi =1, mcreas%s it one step at a time until it gets all the wayton, and adds up whatever is to
the r|ght So, for example, ;_; 2i wouldbe(2 1)+(2 2)+(2 3),andso has the valu.
2no pun intended



18 1. ONE-VARIABLE STATISTICS: BASICS

1.4.2. Mean. The next measure of central tendency, and certainly the easlhmost
often in the press, is simply the average. However, in s$tadisthis is given a different
name.

DEFINJTION 1.4.5. Themean of a dataseks;:::;X, of n numbers is given by the
formula(  x;)=n.
If the data come from a sample, we use the notatiéor the sample mean

is the Greek letter “mu,” pronounced “mew,” to rhyme with tmg for the population
mean

EXAMPLE 1.4.6. Since we've already computed the sum of the data impiell.4.2
to bel7:6085and there weré values in the dataset, the meaixis 17:60855 = 3:5217

EXAMPLE 1.4.7. Again using the data from Example 113.1, we can cafeihe mean
X=( Xj)=n=2246=30 = 748667

Notice that the mean in the two examples above was not oneeafdta values. This
is true quite often. What that means is that the phrase “tkeagewhatevey’ as in “the
average American family ha§” or “the average student do&s” is not talking about any
particular family, and we should not expect any particutanily or student to have or do
that thing. Someone with a statistical education shouldtatigredit every phrase like that
they hear to be instead something like “the mean of the viadabon the population of all
American families is ...,” or “the mean of the variabeon the population of all students is
..., Or whatever.

1.4.3. Median. Our third measure of central tendency is not the result ahiaétic,
but instead of putting the data values in increasing order.

DEFINITION 1.4.8. Imagine that we have put the values of a dafasgt : : ; X,g of n
numbers in increasing (or at least non-decreasing) ordéinagx; X, Xn. Then
if nis odd, themedian of the dataset is the middle valug,.1) -, while if n is even, the
median is the mean of the two middle numbéfsz =211

ExAMPLE 1.4.9. Working with the data in Examgdle 1.4.2, we must rst fhem in
order,ad 3:14153=4; 1; 2; 179, so the median of this dataset is the middle value,

ExAMPLE 1.4.10. Now let us nd the median of the data from Exanipleql..3or-
tunately, in that example, we made a stem-and-leaf plot &ad put the leaves in order,
so that starting at the bottom and going along the rows ofele@and then up to the next
row, will give us all the values in order! Since there are 3iga, we count up to thes"
and16" values, being 76 and 77, and from this we nd that the mediathefdataset is

76+77 _ .
+71 = 76:5.
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1.4.4. Strengths and Weaknesses of These Measures of Cehffandency. The
weakest of the three measures above is the mode. Yes, itastmiknow which value
happened most often in a dataset (or which values all happsmneally often and more of-
ten then all other values). But this often does not necdggallius much about the over-all
structure of the data.

EXAMPLE 1.4.11. Suppose we had the data

86 80 25 77 73 76 100 90 67 93
94 83 72 75 79 70 91 82 71 95
40 58 68 69 100 78 87 25 92 74

with corresponding stem-and-leaf plot

Stem| Leaf

10| 0

012345
023678
0123456789
789

8

0

N WS O1 O OO

55

This would have a histogram with bins of width 10 that lookaetly like the one in Ex-
ample 1.3.P — so the center of the histogram would seem, liyssil to be around the bar
over the 80s — but now there is a unique mode of 25.

What this example shows is that a small change in some of taevdhues, small enough
not to change the histogram at all, can change the mode(&ialy. It also shows that
the location of the mode says very little about the data iregaror its shape, the mode is
based entirely on a possibly accidental coincidence of s@lues in the dataset, no matter
if those values are in the “center” of the histogram or not.

The mean has a similar problem: a small change in the datiae isense of adding only
one new data value, but one which is very far away from therstlean change the mean
quite a bit. Here is an example.

ExXAMPLE 1.4.12. Suppose we take the data from Exarmplel1.3.1 but ehamlyg one
value — such as by changing the 100 to a |1:>OOO' perhaps by aesiymal of the data entry.
Then if we calculate the mean, we get ( x;) =n = 3146=30 = 104:8667 which is
quite different from the mean of original dataset.
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A data value which seems to be quite different from all (orghesat majority of) the rest
is called amutlievﬁ What we have just seen is thiéie mean is very sensitive to outliers
This is a serious defect, although otherwise it is easy topede) to work with, and to
prove theorems about.

Finally, the median is somewhat tedious to compute, becthesest step is to put
all the data values in order, which can be very time-consgmiut, once that is done,
throwing in an outlier tends to move the median only a litike Here is an example.

ExampLE 1.4.13. If we do as in Example 1.4]12 and change the data @&lL@0 in
the dataset of Example_1.8.1 to 1000, but leave all of theratata values unchanged, it
does not change the median at all since the 1000 is the neestarglue, and that does not
change the two middle values at all.

If instead we take the data of Example 113.1 and simply adthen@alue, 1000, with-
out taking away the 100, that does change the media: therearan odd number of data
values, so the median is the middle one after they are putdarpwhich is 78. So the
median has changed by only half a point, from 77.5 to 78. AsdaAguld even be true if
the value we were adding to the dataset were 1000000 andstdtQQ0!

In other wordsthe median is very insensitive to outliers Since, in practice, it is very
easy for datasets to have a few random, bad values (typosamieal errorsetc), which
are often outliers, it is usually smarter to use the median the mean.

As one nal point, note that as we mentioned¥h.4.2, the word “average,” the unso-
phisticated version of “mean,” is often incorrectly usedcaanodi er of the individuals in
some population being studied (as in “the average Americjyrather than as a modi er
of the variable in the study (“the average income...”), aading a fundamental misunder-
standing of what the meameans If you look a little harder at this misunderstanding,
though, perhaps it is based on the idea that we are lookinthéocenter, the “typical”
value of the variable.

The mode might seem like a good way — it's the most frequertbuaing value. But
we have seen how that is somewhat awed.

The mean might also seem like a good way — it's the “averagtefally. But we've
also seen problems with the mean.

In fact, the median is probably closest to the intuitive idééthe center of the data.”
It is, after all, a value with the property that both above baetbw that value lie half of the
data values.

One last example to underline this idea:

EXAMPLE 1.4.14. The period of economic dif culty for world marketsthe late 2000s
and early 2010s is sometimes called (heeat Recession Suppose a politician says that

3This is a very informal de nition of an outlier. Below we wilave an extremely precise one.
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we have come out of that time of troubles, and gives as praofdht that the average
family income has increased from the low value it had durhmg®reat Recession back to
the values it had before then, and perhaps is even higherttivas in 2005.

It is possible that in fact people are better off, as the iaseein this average — mean —
seems to imply. But it is also possible that while the meannme has gone up, theedian
income is still low. This would happen if the histogram ofanees recently still has most
of the tall bars down where the variable (family income) i&,lbut has a few, very high
outliers. In short, if the super-rich have gotten even sujpbier, that will make the mean
(average) go up, even if most of the population has expezkistagnant or decreasing
wages — but the median will tell what is happening to most efgbpulation.

So when a politician uses the evidence of the average (msasygygested here, it is
possible they are trying to hide from the pubic the realityvbiat is happening to the rich
and the not-so-rich. It is also possible that this politicia simply poorly educated in
statistics and doesn't realize what is going on. You be thgg¢u.. but pay attention so you
know what to ask about.

The last thing we need to say about the strengths and weaseksur different mea-
sures of central tendency is a way to use the weaknesses ofdéie and median to our
advantage. That is, since the mean is sensitive to outheic pulled in the direction of
those outliers, while the median is not, we can use the éifiee between the two to tell us
which way a histogram is skewed.

FACT 1.4.15. If the mean of a dataset is larger than the median Hiséograms of that
dataset will be right-skewed. Similarly, if the mean is l#smn the median, histograms will
be left-skewed.
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1.5. Numerical Descriptions of Data, Il: Measures of Spread

1.5.1. Range.The simplest — and least useful — measure of the spread of dataes
literally how much space on theaxis the histogram takes up. To de ne this, rst a bit of
convenient notation:

Xmin for the smallest angl»x for the largest values in the dataset.

With this, we can de ne our rst measure of spread

data is the numbetyax ~ Xmin -

EXAMPLE 1.5.3. Using again the statistics test scores data from Bbkein3.1, we
can read off from the stem-and-leaf plot thaf, = 25 andXxmax = 100, so the range is
75(=100 25).

ExXAMPLE 1.5.4. Working now with the made-up data in Exaniple 1.4.4¢ctvivas put
into increasing order in Example 1.4.9, we can seexhat = 3:1415andXmax = 17,
so the range i20:1415(= 17 ( 3:1415))

The thing to notice here is that since the idea of outlierbas they are outside of the
normal behavior of the dataset, if there are any outlierg Wié de nitely be what value
gets calledkmin Or Xmax (Or both). Sothe range is supremely sensitive to outliersif
there are any outliers, the range will be determined exdwtlthem, and not by what the
typical data is doing.

1.5.2. Quartiles and thelQR . Let's try to nd a substitute for the range which is not
SO sensitive to outliers. We want to see how far apart not theimmum and minimum of
the whole dataset are, but instead how far apart are theatylpigier values in the dataset
and the typical smaller values. How can we measure theseatyjprger and smaller? One
way is to de ne these in terms of the typical — central — val@éhe upper half of the data
and the typical value of the lower half of the data. Here isdbaition we shall use for
that concept:

DEFINITION 1.5.5. Imagine that we have put the values of a datiasgt : : ; X,g of
n numbers in increasing (or at least non-decreasing) orddhatx;  Xp Xn -

Then therst quartile , written Q, is the median of the lower half data, and thed
quartile, written Qgs, is the median of the upper half data.
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Note that the rst quartile is halfway through the lower hatfthe data. In other words,
it is a value such that one quarter of the data is smaller. |&ilyi the third quatrtile is
halfway through the upper half of the data, so it is a valuéghat three quarters of the
data is small. Hence the names “ rst” and “third quartiles.”

We can build a outlier-insensitive measure of spread oultiefjuartiles.

DEFINITION 1.5.6. Given a quantitative dataset, itser-quartile range or IQR is
dened bylQR = Q3 Q.

ExaAMPLE 1.5.7. Yet again working with the statistics test scores deim Exam-
ple[1.3.1, we can count off the lower and upper half datasets the stem-and-leaf plot,
being respectively

Lower = f 25, 25; 40; 58,68, 69,69, 70, 70, 71, 73,73, 73, 74; 769
and

Upper = 77, 78,80, 83,83, 86; 87, 88,90, 90; 90; 92, 93,95, 100y :
It follows that, for these dat&; = 70 andQs; = 88, solQR =18(=88 70).

ExAamMPLE 1.5.8. Working again with the made-up data in Exaniple 1 wtich was
putinto increasing order in Example 1.4.9, we can see tedbther half datai$ 3:1415:75g,
the upper half i§ 2,179, Q, =  1:19575(= —31425+78) Q5 = 9:5(= #}7), andIQR =
1069575(=95 ( 1:19575))

1.5.3. Variance and Standard Deviation.We've seen a crude measure of spread, like
the crude measure “mode” of central tendency. We've also adxetter measure of spread,
the IQR, which is insensitive to outliers like the median (and boilit of medians). It
seems that, to Il out the parallel triple of measures, thaneuld be a measure of spread
which is similar to the mean. Let's try to build one.

Suppose the data is sample data. Then how far a particularvdatex; is from the
sample meaR is justx; X. Sothe mean displacement from the mean, the mean oX,
should be a good measure of variability, shouldn't it?

Unfortunately, it turns out that the meanxf X is always 0. This is because when
X; > X,X; X Iis positive, while wherx; < X, x; X is negative, and it turns out that the
positives always exactly cancel the negatives (see if youptave this algebraically, it's
not hard).

We therefore need to make the numbers X positive before taking their mean. One
way to do this is to square them all. Then we take somethingisialmost the mean of
these squared numbers to get another measure of spreadiadmilitsr

varianceis de ned as P
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Out of this, we then de ne theample standard deviation

Why do we take the square root in that sample standard deniaflhe answer is that
the measure we build should have the property that if all telvers are made twice as big,
then the measure of spread should also be twice as big. Gaxéonple, if we rst started
working with data measured in feet and then at some pointldddio work in inches, the
numbers would all be 12 times as big, and it would make senteimeasure of spread
were also 12 times as big.

The variance does not have this property: if the data areoalbléd, the variance in-
creases by a factor of 4. Or if the data are all multiplied byth2 variance is multiplied
by a factor of 144.

If we take the square root of the variance, though, we get batke nice property of
doubling data doubles the measure of spre#cl, For this reason, while we have de ned
the variance on its own and some calculators, computerspasithe tools will tell the
variance whenever you ask them to computer 1-variablestitaj we will in this class only
consider the variance a stepping stone on the way to the e=dume of spread of data, the
standard deviation.

One last thing we should de ne in this section. For techniealsons that we shall not
go into now, the de nition of standard deviation is slightlifferent if we are working with
population data and not sample data:

[This letter is the lower-case Greek letter sigma, whose upper cageu've seen
elsewhere.]

Now for some examples. Notice that to calculate these valueshall always use an
electronic tool like a calculator or a spreadsheet that hagil&in variance and standard
deviation program — experience shows that it is nearly imbs to get all the calculations
entered correctly into a non-statistical calculator, scshall not even try.
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ExAMPLE 1.5.11. For the statistics test scores data from Exampl@,leB8tering them
into a spreadsheet and usiW@R.S andSTDEV.S for the sample variance and standard
deviation andVAR.P andSTDEV.P for population variance and population standard de-
viation, we get

S? =331:98
S, =18:22
x 2 =330:92
x =17:91

EXAMPLE 1.5.12. Similarly, for the data in Examgdle 1.4.2, we nd iretkame way
that

S? = 60:60
S, =7:78
x 2 =48:48
x =6:96

1.5.4. Strengths and Weaknesses of These Measures of Spre&lde have already
said thathe range is extremely sensitive to outliers

ThelQR, however, is built up out of medians, used in different wagsthe IQR is
insensitive to outliers

The variance, both sample and population, is built usingoggss quite like a mean,
and in fact also has the mean itself in the de ning formulancBithe standard deviation
in both cases is simply the square root of the variance, libMi@ thatthe sample and
population variances and standard deviations are all sensve to outliers.

This differing sensitivity and insensitivity to outliers the main difference between the
different measures of spread that we have discussed indtli®s.

One other weakness, in a certain sense, ofl@R is that there are several differ-
ent de nitions in use of the quartiles, based upon whetherrtedian value is included
or not when dividing up the data. These are called, for exan@QUARTILE.INC and
QUARTILE.EXCon some spreadsheets. It can then be confusing which one.to us

1.5.5. A Formal De nition of Outliers —the 1:51QR Rule. So far, we have said that
outliers are simply data that aatypical We need a precise de nition that can be carefully
checked. What we will use is a formula (well, actually twonfaree) that describe that idea
of an outlier beindgar away from the rest of data

Actually, since outliers should be far away either in beimggiscantly bigger than the
rest of the data or in being signi cantly smaller, we shoulké a value on the upper side of
the rest of the data, and another on the lower side, as thengtaoints for thisfar away.



26 1. ONE-VARIABLE STATISTICS: BASICS

We can't pick thexmax andXmin as those starting points, since they will be the outliers
themselves, as we have noticed. So we will use our earlierafle value which is typical
for the larger part of the data, the quartg, andQ; for the corresponding lower part of
the data.

Now we need to decide how farfar enough awayrom those quartiles to count as an
outlier. If the data already has a lot of variation, then a m&ata value would have to be
quite far in order for us to be sure that it is not out there lpestause of the variation already
in the data. So our measurefaf enoughshould be in terms of a measure of spread of the
data.

Looking at the last section, we see that only LR is a measure of spread which is
insensitive to outliers — and we de nitely don't want to usenaasure which is sensitive
to the outliers, one which would have been affected by thg wetliers we are trying to
de ne.

All this goes together in the following

DEFINITION 1.5.13. [Thel:5I1QR Rule for Outliers] Starting with a quantitative
dataset whose rst and third quartiles &g and Qz; and whose inter-quartile range is
IQR, a data valu« is [of cially, from now on] called anoutlier if x<Q; 1.:51QR or
Xx>Q3+1:5I0R.

Notice this means thatis not an outlierifitsatisefQ; 1.5I1QR x Qs3+1:5IQR.

EXAMPLE 1.5.14. Let's see if there were any outliers in the test sclataset from
Example 1.311. We found the quartiles ai@R in Example 1.5.J7, so from th&51QR
Rule, a data valug will be an outlier if

Xx<Q: 15IQR =70 15 18=43
or if
X>Q3+1:5IQR =88+1:5 18 =115:

Looking at the stemplot in Table 1.3.1, we conclude that tita dalue5, 25, and40are
the outliers in this dataset.

ExamMpPLE 1.5.15. Applying the same method to the data in Exarmplelluidg the
quartiles andQR from Examplé 1.5)8, the condition for an outliers

Xx<Q: LIS5IQR = 1119575 1.5 1069575= 17:239375

or
X>Q3+1:51QR =9:5+1:5 1069575 = 25543625

Since none of the data values satisfy either of these congitthere are no outliers in this
dataset.
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1.5.6. The Five-Number Summary and Boxplots.We have seen that numerical sum-
maries of quantitative data can be very useful for quickigenstanding (some things about)
the data. It is therefore convenient for a nice package ddrs¢of these

DEFINITION 1.5.16. Given a quantitative dataset;: : :; X, g, the ve-number sum-
maryH of this data is the set of values

fXmin; Q1; median Qs; Xmaxd

ExAamMPLE 1.5.17. Why not write down the ve-number summary for the sarest
score data we saw in Examjble 113.1? We've already done mdis¢ afork, such as calcu-
lating the min and max in Examgle 1.5.3, the quartiles in Epl@fl.5.7, and the median in
Exampld_1.4.70, so the ve-number summary is

Xmin = 25

Q. =70
median = 765

Q3 =88
Xmax = 100

ExamMPLE 1.5.18. And, for completeness, the ve number summary ferrntade-up
data in Example 1,412 is

Xmin = 3:1415
Q= 19575
median = 1
Q:=95
Xmax = 17

where we got the min and max from Example 1.5.4, the median gamplé 1.4]9, and
the quartiles from Example 1.5.8.

As we have seen already several times, it is nice to have agbotimeric and a graph-
ical/visual version of everything. The graphical equivdlef the ve-number summary
is

DEFINITION 1.5.19. Given some quantitative databaxplot [sometimesbhox-and-
whisker plot] is a graphical depiction of the ve-number summary, asdolé:

4Which might write 5N ary for short.
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an axis is drawn, labelled with the variable of the study

tick marks and numbers are put on the axis, enough to allovotloeving visual
features to be located numerically

a rectangle (thbox) is drawn parallel to the axis, stretching from val@@sto Q3
on the axis

an addition line is drawn, parallel to the sides of the boxoatationsx,,, and
Xmax , at the axis coordinate of the median of the data

lines are drawn parallel to the axis from the middle of sideshe box at the
locationsxmin andXxmax out to the axis coordinates,, andXmnax, where these
whiskersterminate in “T”s.

EXAMPLE 1.5.20. A boxplot for the test score data we started using<amiple 1.3.11
is easy to make after we found the corresponding ve-numbemsary in Example 1.5.17:

Boxplot for Test Score Data

100 - -

60 =

test score

40 -

20 1

Sometimes it is nice to make a version of the boxplot whiclkss Isensitive to outliers.
Since the endpoints of the whiskers are the only parts of éxelbt which are sensitive in
this way, they are all we have to change:

DEFINITION 1.5.21. Given some quantitative datdyaxplot showing outliers[some-
timesbox-and-whisker plot showing outlierq is minor modi cation of the regular box-
plot, as follows

the whiskers only extend as far as the largest and smallesbuatiier data values
dots are put along the lines of the whiskers at the axis coatés of any outliers
in the dataset

EXAMPLE 1.5.22. A boxplot showing outliers for the test score datasteeted using
in Example_1.311 is only a small modi cation of the one we josade in Example 1.5.20
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Boxplot Showing Qutliers for Test Score Data

100 T
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40 + [}
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test score
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Exercises

EXERCISE 1.1. A product development manager at the campus bookstangsvio
make sure that the backpacks being sold there are stronglenogearry the heavy books
students carry around campus. The manager decides sheollgittcsome data on how
heavy are the bags/packs/suitcases students are camrgingaat the moment, by stopping
the next 100 people she meets at the center of campus andnmgasu

What are the individuals in this study? What is the populdtids there a sample —
what is it? What is the variable? What kind of variable is this

EXERCISE1.2. During a blood drive on campus, 300 donated blood. Gigh&36 had
blood of typeO, 120 had blood of typd&, 32 of typeB, and the rest of typAB .

Answer the same questions as in the previous exercise fondw situation.

Now make at least two visual representations of these data.

EXERCISE 1.3. Go to théNikipedia page for “Heights of Presidents and Presidential
Candidates of the United States” and look only at the heightise presidents themselves,
in centimetersgm).

Make a histogram with these data using bins of width 5. Exghaiw you are handling
the edge cases in your histogram.

EXERCISE1.4. Suppose you go to the supermarket every week for a yddngra bag
of our, packaged by a major national our brand, which is &led as weighingkg. You
take the bag home and weigh it on an extremely accurate $edleneasures to the nearest
1=100" of a gram. After the 52 weeks of the year of our buying, you raakhistogram
of the accurate weights of the bags. What do you think thabg@ram will look like? Will
it be symmetric or skewed left or right (which one?), wheré itg center be, will it show
a lot of variation/spread or only a little? Explain why yourtheach of the things you say.

What about if you buy dkg loaf of bread from the local artisanal bakery — what would
the histogram of the accurate weights of those loaves Idak (6ame questions as for
histogram of weights of the bags of our)?

If you said that those histograms were symmetric, can youktbf a measurement
you would make in a grocery store or bakery which would be skkevand if you said
the histograms for our and loaf weights were skewed, can tyink of one which would
be symmetric? (Explain why, always, of course.) [If you thione of the two above
histograms was skewed and one was symmetric (with exptanatiou don't need to come
up with another one here.]


https://en.wikipedia.org/wiki/Heights_of_presidents_and_presidential_candidates_of_the_United_States
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EXERCISE 1.5. Twenty sacks of grain weigh a total 800&kg. What is the mean
weight per sack?

Can you determine the median weight per sack from the givemnmation? If so,
explain how. If not, give two examples of datasets with theeaotal weight be different
medians.

EXERCISE 1.6. For the datasdt6; 2;6;14; 3;0;1;4;3;2;59, which we will call
DS;, ndthe mode(s), mean, and median.

De ne DS, by adding3 to each number ilDS;. What are the mode(s), mean, and
median ofDS,?

Now de ne DS3 by subtractings from each number iDS;. What are the mode(s),
mean, and median @S3?

Next, de ne DS, by multiplying every number iDS; by 2. What are the mode(s),
mean, and median @S,?

Looking at your answers to the above calculations, how do think the mode(s),
mean, and median of datasets must change when you add,csubtutiply or divide all
the numbers by the same constant? Make a speci ¢ conjecture!

EXERCISEL.7. There is a very hard mathematics competition in whidlege students
in the US and Canada can participate calledwikiam Lowell Putnam Mathematical
Competition. It consists of a six-hour long test with twelve problemsagd 0 to 10 on
each problem, so the total score could be anything from 0@ 12

The median score last year on the Putnam exam was 0 (as itisftactually). What
does this tell you about the scores of the students who tGoBé& as precise as you can.
Can you tell what fraction (percentage) of students had taicescore or scores? Can you
gure out what the quartiles must be?

EXERCISE 1.8. Find the rangd QR , and standard deviation of the following sample
dataset:

DS; =10;0;0;0;0;:5;1;1;1; 1; 1g

Now nd the range QR , and standard deviation of the following sample data:
DS,=10;:5;1,1,1,1;1;1;1;1; 1g

Next nd the range) QR , and standard deviation of the following sample data:
DS; = f0;0;0;0;0;0;0; 0; 0; :5; 1g

Finally, nd the range|QR, and standard deviation of sample dBt&,, consisting of 98
0s, one .5, and one 1 (so likES3; except with 0 occurring 98 times instead of 9 time).



32 1. ONE-VARIABLE STATISTICS: BASICS

EXERCISE 1.9. What must be true about a dataset if its range is 0? Gaentbst
interesting example of a dataset with range of 0 and the piyppeu just described that
you can think of.

What must be true about a dataset ifi@R is 0? Give the most interesting example
of a dataset withQR of 0 and the property you just described that you can think of.

What must be true about a dataset if its standard deviatid® (Sive the most interest-
ing example of a dataset with standard deviation of 0 and tbpguty you just described
that you can think of.

EXERCISE 1.10. Here are some boxplots of test scores, out of 100, cenadatdized
test given in ve different classes — the same test, diffecémsses. For each of these plots,
A E, describe qualitatively (in the sensexdf3.4) but in as much detail as you can, what
must have been the histogram for the data behind this boxfled sketch a possible such
histogram, for each case.

100

-
80 |-
40

20 J
L L

test scores




CHAPTER 2

Bi-variate Statistics: Basics

2.1. Terminology: Explanatory/Response or Independent/Bpendent

All of the discussion so far has been for studies which havaglesvariable. We may
collect the values of this variable for a large populationableast the largest sample we
can afford to examine, and we may display the resulting dedavariety of graphical ways,
and summarize it in a variety of numerical ways. But in the alhthis work can only show
a single characteristic of the individuals. If, instead, want to study aelationship we
need to collect two (at least) variables and develop metbbdsscriptive statistics which
show the relationships between the values of these vasiable

Relationships in data require at least two variables. Whibee complex relationships
can involve more, in this chapter we will start the projectiotlerstandindpivariate data
data where we make two observations for each individual,revlee have exactly two
variables.

If there is a relationship between the two variables we ardysbg, the most that we
could hope for would be that that relationship is due to tlet faat one of the variables
causeghe other. In this situation, we have special names for thiesables

DEFINITION 2.1.1. In a situation with bivariate data, if one variable take on any
value without (signi cant) constraint it is called thiedependent variable while the sec-
ond variable, whose value is (at least partially) contbldg the rst, is called thalepen-
dent variable.

Since the value of the dependent variable depends upon the oathe independent
variable, we could also say that it is explained by the indepat variable. Therefore the
independent variable is also called #planatory variable and the dependent variable is
then called theesponse variable

Whenever we have bivariate data and we have made a choiceidh wériable will
be the independent and which the dependent, we write the independent anglfor the
dependent variable.

EXAMPLE 2.1.2. Suppose we have a large warehouse of many differeastus prod-
ucts ready to ship to clients. Perhaps we have packed allrtitipts in boxes which are
perfect cubes, because they are stronger and it is eastaictotaem ef ciently. We could
do a study where

theindividualswould be the boxes of product;
33
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the populationwould be all the boxes in our warehouse;

theindependent variablgvould be, for a particular box, the length of its side in
cm

thedependent variablevould be, for a particular box, the cost to the customer of
buying that item, in US dollars.

We might think that the sizdeterminegshe cost, at least approximately, because the
larger boxes contain larger products into which went move maaterials and more labor,
so the items would be more expensive. So, at least rougl\gie may be anything, it is
a free orindependenthoice, while the cost is (approximately) determined bydize, so
the cost iglependentOtherwise said, the sizxplainsand the cost is theesponseHence
the choice of those variables.

EXAMPLE 2.1.3. Suppose we have exactly the same scenario as abavegvibuve
want to make the different choice where

thedependent variableould be, for a particular box, the volume of that box.

There is one quite important difference between the two @@smabove: in one case
(the cost), knowing the length of the side of a box give us & &out how much it costs
(bigger boxes cost more, smaller boxes cost less) but tlus/ledge is imperfect (some-
times a big box is cheap, sometimes a small box is expenswgl in the other case (the
volume), knowing the length of the side of the box perfectlystus the volume. In fact,
there is a simple geometric formula that the voluvhef a cube of side length is given
byV = s

This motivates a last preliminary de nition

DEFINITION 2.1.4. We say that the relationship between two variabléstierministic
if knowing the value of one variable completely determines value of the other. If,
instead, knowing one value does not completely determiaether, we say the variables
have anon-deterministic relationship.
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2.2. Scatterplots

When we have bivariate data, the rst thing we should alwayssdiraw a graph of this
data, to get some feeling about what the data is showing usvhatistatistical methods it
makes sense to try to use. The way to do this is as follows

DEFINITION 2.2.1. Given bivariate quantitative data, we makedbatterplot of this
data as follows: Draw ar- and ay-axis, and label them with descriptions of the indepen-
dent and dependent variables, respectively. Then, for isaividual in the dataset, put a
dot on the graph at locatidix; y), if x is the value of that individual's independent variable
andy the value of its dependent variable.

After making a scatterplot, we usually describe it qualrely in three respects:

DEFINITION 2.2.2. If the cloud of data points in a scatterplot generigdly near some
curve, we say that the scatterplot has [approximately]gshape

A common shape we tend to nd in scatterplots is that linear

If there is no visible shape, we say the scatterplatm®rphous orhas no clear shape

DEFINITION 2.2.3. When a scatterplot has some visible shape — so thabwetd
describe it as amorphous — how close the cloud of data pairttsthat curve is called the
strength of that association. In this contexts&rong [linear, e.g.] association means that
the dots are close to the named curve [lieg,.], while aweak association means that the
points do not lie particularly close to any of the named carfliee, e.g.].

DEFINITION 2.2.4. In case a scatterplot has a fairly strong linear asso, thedi-
rection of the association described whether the line is increasirdgcreasing. We say
the association ipositive if the line is increasing andegativeif it is decreasing.

[Note that the wordgositiveand negativehere can be thought of as describing the
slopeof the line which we are saying is the underlying relatiopshithe scatterplot.]
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2.3. Correlation

As before (inx{I.4 and_1.b), when we moved from describing histograms withds/
(like symmetri¢ to describing them with numbers (like tmeear), we now will build a
numeric measure of the strength and direction of a linearcgaison in a scatterplot.

son] correlation coef cient of this dataset is

1 X x WY

r =
n 1 Sx Sy

wheres, ands, are the standard deviations of tha@ndy, respectively, datasets by them-
selves.

We collect some basic information about the correlatiorf caat in the following

lation coef cientr, we have

(1) 1 r lisalwaystrue;

(2) if jrj is nearl — meaning that is near 1-then the linear association between
andy is strong

(3) if r is near0 — meaning that is positive or negative, but ne@r- then the linear
association betweenandy is weak

(4) if r > 0then the linear association betweemndy is positive, while ifr < 0
then the linear association betweeandy is negative

(5) r is the same no matter what units are used for the variablsdy — meaning
that if we change the units in either varialieyill not change

(6) r is the same no matter which variable is begin used as thereadply and which
as the response variable — meaning that if we switch the oblibe x and they in
our dataset;, will not change.

It is also nice to have some examples of correlation coehtsesuch as
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Many electronic tools which compute the correlation coedfrd r of a dataset also
report its square,?. There reason is explained in the following

FACT 2.3.3. Ifr is the correlation coef cient between two variabbesandy in some
quantitative dataset, then its squafeit the fraction (often described as a percentage) of
the variation ofy which is associated with variation

ExAmMPLE 2.3.4. If the square of the correlation coef cient betweka independent
variablehow many hours a week a student studies statiatidthe dependent variatiiew
many points the student gets on the statistics nal eis®4, then 64% of the variation in
scores for that class is cause by variation in how much theestis study. The remaining
36% of the variation in scores is due to other random facikesvhether a student was
coming down with a cold on the day of the nal, or happened &epl poorly the night
before the nal because of neighbors having a party, or sotherdssues different just
from studying time.
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Exercises

EXERCISE2.1. Suppose you pick 50 random adults across the UniteesStajanuary
2017 and measure how tall they are. For each of them, you alsacgurate information
about how tall their (biological) parents are. Now, usingasr individuals these 50 adults
and as the two variables their heights and the average of pheents' heights, make a
sketch of what you think the resulting scatterplot wouldddige. Explain why you made
the choice you did of one variable to be the explanatory aedther the response variable.
Tell what are the shape, strength, and direction you seeisnstiatterplot, if it shows a
deterministic or non-deterministic association, and wbwy think those conclusions would
be true if you were to do this exercise with real data.

Is there any time or place other than right now in the Unitedeé®t where you think the
data you would collect as above would result in a scattethbdtwould look fairly different
in some signi cant way? Explain!

EXERCISE2.2. It actually turns out that it is not true that the more espa works, the
more they produce ... at least not always. Data on workersiida variety of industries
show that working more hours produces more of that busisgssduct for a while, but
then after too many hours of work, keeping on working makesafmost no additional
production.

Describe how you might collect data to investigate thistreteship, by telling what
individuals, population, sample, and variables you wouwdd.urhen, assuming the truth of
the above statement about what other research in this asdalvad, make an example of
a scatterplot that you think might result from your suggestata collection.

EXERCISE 2.3. Make a scatterplot of the dataset consisting of thevietig pairs of
measurements:

f(8;16);(9;9); (10;4); (11;1); (12, 0); (13; 1); (14; 4); (15;9); (16; 16)9:

You can do this quite easily by hand (there are only nine gdintFeel free to use an
electronic device to make the plot for you, if you have one koow how to use, but copy
the resulting picture into the homework you hand in, eithehlnd or cut-and-paste into
an electronic version.

Describe the scatterplot, telling what are the shape, gtinermand direction. What do
you think would be the correlation coef cient of this dattseAs always, explain all of
your reasoning!



CHAPTER 3

Linear Regression

Quick review of equations for lines:
Recall the equation of a line is usually in the foym= mx + b, wherex andy are
variables anan andbare numbers. Some basic facts about lines:

If you are given a number fot, you can plug it in to the equation= mx + bto
get a number foy, which together give you a point with coordinafesy) that is
on the line.
m is theslope which tells how much the line goes up (increasydor every unit
you move over to the right (increasing— we often say that the value of the slope
ism = "¢ it can be

— positive if the line is tilted up,

— negativeif the line is tilted down,

— zerq if the line is horizontal, and

— unde ned if the line is vertical.
You can calculate the slope by nding the coordinafes y;) and(xz;y,) of any
two points on the line and then = %
In particular,x; x; = 1, thenm = 2% =y, y; —so if you look at how
much the line goes up in each step of one unit to the right,ibatber will be
the slopem (and if it goesdown the slopem will simply be negative). In other
words, the slope answers the question “for each step toghg how much does
the line increase (or decrease)?”
bis they-intercept which tells they-coordinate of the point where the line crosses
they-axis. Another way of saying that is thiats they value of the line when the
X is 0.

3.1. The Least Squares Regression Line

correlation coef cient indicates some linear associatibis natural to want to write down
explicitly the equation of the best line through the datae-dhestion is what is this line.
The most common meaning givenltestin this search for the line ithe line whose total
square error is the smallest possibl&e make this notion precise in two steps

39
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a candidate lindgg = mx + b passing through this datasetresidual is the difference in
y-coordinates of an actual data pofrt; y;) and the line'sy value at the same-coordinate.
That s, if they-coordinate of the line whex = x; isf3 = mx; + b, then the residual is the
measure of error given bgrror; = y; 1.

Note we use the convention here and elsewhere of wriiifoy they-coordinate on an
approximating line, while the plain variable is left for actual data values, like
Here is an example of what residuals look like

Now we are in the position to state the

DEFINITION 3.1.2. Given a bivariate quantitative dataset ldaest square regression
line, almost always abbreviated L&SRL, is the line for which the sum of the squares of
the residuals is the smallest possible.

by = mx + b, then
(1) The slope of the LSRL is given by = rz—i, wherer is the correlation coef cient
of the dataset.
(2) The LSRL passes through the pofrty).
(3) It follows that they-intercept of the LSRL isgivenbg=y Xm =y Xr :—z

It is possible to nd the (coef cients of the) LSRL using théave information, but it
is often more convenient to use a calculator or other eletrmol. Such tools also make
it very easy to graph the LSRL right on top of the scatterplatthough it is often fairly
easy to sketch what the LSRL will likely look like by just maki a good guess, using
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visual intuition, if the linear association is strong (adlWwe indicated by the correlation
coef cient).

ExaMPLE 3.1.4. Here is some data where the individuals are 23 stadeatstatistics
class, the independent variable is the students' totaksoortheir homeworks, while the
dependent variable is their nal total course points, baihaf 100.

X: 65 65 50 53 59 92 86 84 29
y: 74 71 65 60 83 90 84 88 48

X: 29 9 64 31 69 10 57 81 81
y: 54 25 79 58 81 29 81 94 86

x: 80 70 60 62 59
: 95 68 69 83 70

Here is the resulting scatterplot, made witibreOf ce Calc (a free equivalent oMi-
crosoft Excel

It seems pretty clear that there is quite a strong linearcéatson between these two vari-
ables, as is born out by the correlation coef cient; :935(computed withLibreOf ce
Calc's CORRE)L Using therSTDEV.S andAVERAGEwe nd that the coef cients of the
LSRL for this datapp = mx + bare

Sy 18701

m = rg = :93523:7207: 754 and b=y Xm=71 58 :754 =26976
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We can also uskibreOf ce Calc 's Insert Trend Line , with Show Equation ,
to get all this done automatically. Note that wHahreOf ce Calc writes the equation of
the LSRL, it used (x) in place offs, as we would.
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3.2. Applications and Interpretations of LSRLs

have computed its correlation coef cientand (the coef cients of) its LSRIp = mx + b.
What is this information good for?
The main use of the LSRL is described in the following

DEFINITION 3.2.1. Given a bivariate quantitative dataset and assatiabRL with
equationp = mx + b, the process of guessing that the value of the dependeilaiin
this relationship to have the valuex, + b, for xo any value for the independent variable
which satis esXxmin X0 Xmax, IS calledinterpolation.

The idea of interpolation is that we think the LSRL describesvell as possible the
relationship between the independent and dependent iesjao that if we have a new
value, we'll use the LSRL equation to predict what would be loest guess of what would
be the corresponding Note we might have a new value wibecause we simply lost part
of our dataset and are trying to Il itin as best we can. Anotlgason might be that a new
individual came along whose value of the independent vkejab, was typical of the rest
of the dataset — so the the very leagl, Xo Xmax —and we want to guess what will
be the value of the dependent variable for this individuébieewe measure it. (Or maybe
we cannot measure it for some reason.)

A common (but naive) alternate approach to interpolatiorafealuex, as above might
be to nd two valuesx; andx; in the dataset which were as closextpas possible, and on
either side of it (sx; < X < Xj), and simply to guess that tlyevalue forx, would be
the average of; andy;. This is not a terrible idea, but it is not as effective as ggime
LSRL as described above, since we use the entire datasetwenleuild the coef cients of
the LSRL. So the LSRL will give, by the process of interpalatithe best guess for what
should be that missing-value based on everything we know, while the “averagg aind
y;” method only pays attention to those two nearest data paimisthus may give a very
bad guess for the correspondiyngalue if those two points are not perfectly typical, if they
have any randomness, any variation in thewalues which is not due to the variation of
thex.

It is thus always best to use interpolation as describedeabov

EXAMPLE 3.2.2. Working with the statistics students' homework astdltcourse points
data from Example 3.1.4, suppose the gradebook of the cinsgector was somewhat
corrupted and the instructor lost the nal course pointsled student Janet. If Janet's
homework points of 77 were not in the corrupted part of thedgbmok, the instructor
might use interpolation to guess what Janet's total couoset probably were. To do this,
the instructor would have pluggedxn= 77 into the equation of the LSRIljs = mx + bto
get the estimated total course points4 77 + 26:976 = 85034
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Another important use of the (coef cients of the) LSRL is teetthe underlying mean-
ings of the slope ang-intercept. For this, recall that in the equatps mx + b, the slope
m tells us how much the line goes up (or down, if the slope is treg)for each increase of
thex by one unit, while the/-interceptb tells us what would be thg value where the line
crosses thg-axis, so when th& has the value 0. In each particular situation that we have
bivariate quantitative data and compute an LSRL, we can tiserthese interpretations to
make statements about the relationship between the indepeand dependent variables.

ExAmMPLE 3.2.3. Look one more time at the data on students’ homewodktatal
course points in a statistics class from Example 3.1.4, hedhte LSRL computed there.
We said that the slope of the LSRL was = :754and they-intercept wad = 26:976
In context, what this means, is th@n average, each additional point of homework cor-
responded to an increase of54total course points.We may hope that this is actually
a causal relationship, that the extra work a student doeano that additional point of
homework score helps the student learn more statistics learéfore get75 more total
course points. But the mathematics here does not requirediaation, it merely tells us
the increase ix is associatedvith that much increase .

Likewise, we can also conclude from the LSRL thageneral, a student who did no
homework at all would earn abo@6:976total course pointsAgain, we cannot conclude
that doing no homeworkauseghat terrible nal course point total, only that there is an
association.
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3.3. Cautions

3.3.1. Sensitivity to Outliers. The correlation coef cient and the (coef cients of the)
LSRL are built out of means and standard deviations and fitrer¢he following fact is
completely unsurprising

FACT 3.3.1. The correlation coef cient and the (coef cients d¢fe) LSRL are very
sensitive to outliers.

What perhaps is surprising here is that the outliers forrata data are a little different
from those for 1-variable data.

DEFINITION 3.3.2. Anoutlier for a bivariate quantitative dataset is one which is far
away from the curve which has been identi ed as underlyirggghape of the scatterplot
of that data. In particular, a poifix;y) can be a bivariate outlier even if bothis not an
outlier for the independent variable data considered adortty is not an outlier for the
dependent variable data alone.

EXAMPLE 3.3.3. Suppose we add one more pdi@®; 30) to the dataset in Exam-
ple 3.1.4. Neither th&- nory-coordinates of this point are outliers with respect torthei
respective single-coordinate datasets, but it is neviegbelearly a bivariate outlier, as can
be seen in the new scatterplot

In fact recomputing the correlation coef cient and LSRL, wed quite a change from what
we found before, in Example 3.1.4:

r=:704 [which used to be935
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and
P=:52% + 38:458 [which used to be754x + 26:97q

all because of one additional point!

3.3.2. Causation.The attentive reader will have noticed that we started cagudision
of bivariate data by saying we hoped to study when one thangsesanother. However,
what we've actually done instead is ncorrelation between variables, which is quite a
different thing.

Now philosophers have discussed what exactly causatifmm millennia, so certainly
it is a subtle issue that we will not resolve here. In factebarstatisticians usually dodge
the complexities by talking abotlationshipsassociationand, of course, theorrelation
coef cient, being careful always not to commit tausation— at least based only on an
analysis of the statistical data.

As just one example, where we spoke about the meaning of theresf of the cor-
relation coef cient (we called it Fact 2.3.3), we were calleb say thatr?> measures the
variation of the dependent variable whichaissociatedvith the variation of the indepen-
dent variable. A more reckless description would have beesay that oneausedthe
other — but don't fall into that trap!

This would be a bad idea because (among other reasons) tletation coef cient
is symmetric in the choice of explanatory and response bi@sa(meaning is the same
no matter which is chosen for which role), while any reastmaiotion of causation is
asymmetric. E.g., while the correlation is exactly the same very large valudh wither
variable being« and whichy, most people would say thaimoking causes cancand not
the other wayt

We do need to make one caution about this caution, howevtheié is a causal rela-
tionship between two variables that are being studied clyethen there will be correla-
tion. So, to quote the great data scientist Edward TUit¢J6],

Correlation is not causation but it sure is a hint.

The rst part of this quote (up to the “but”) is much more fanscand, as a very rst step, is
a good slogan to live by. Those with a bit more statisticahssfzation might instead learn
this version, though. A more sophisticated-sounding versagain due to Tufteluf06],

is

Empirically observed covariation is a necessary but notcgeriit condi-
tion for causality.

LAlthough in the 1950s a doctor (who later was found to be inging of the tobacco industry) did say
that the clear statistical evidence of association betvameoking and cancer might be a sign that cancer
causes smoking (I know: crazy!). His theory was that peogie have lung tissue which is more prone to
developing cancer are more likely to start smoking becaoseshow the smoke makes that particular tissue
feel better. Needless to say, this is not the accepted medkeg because lots of evidence goes against it.
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3.3.3. Extrapolation. We have said that visual intuition often allows humans tdacke
fairly good approximations of the LSRL on a scatterplot,@og as the correlation coef -
cient tells us there is a strong linear association. If thigeht reader did that with the rst
scatterplot in Example 3.1.4, probably the resulting limeked much like the line which
LibreOf ce Calc produced — except humans usually sketch their line all thetaéhe left
and right edges of the graphics box. Automatic tools LikeeOf ce Calc do not do that,
for a reason.

DEFINITION 3.3.4. Given a bivariate quantitative dataset and assatiaBRL with
equationp = mx + b, the process of guessing that the value of the dependeilaiin
this relationship to have the valuex, + b, for xo any value for the independent variable
whichdoes not satisfymin X0  Xmax [SO, instead, eithexg < X min OF Xg > X max |, IS
calledextrapolation.

Extrapolation is considered a bad, or at least risky, practrhe idea is that we used

all of this data lies in the interval on theaxis fromXmin t0 Xmax. There is literally no
evidence from this dataset about what the relationshipdéatvour chosen explanatory and
response variables will be faroutside of this interval. So in the absence of strong reasons
to believe that the precise linear relationship describyetthé LSRL will continue for more

x's, we should not assume that it does, and therefore we sinotlgdse the LSRL equation

to guess values by extrapolation.

The fact is, however, that often the best thing we can do witilable information
when we want to make predictions out into uncharted teritar thex-axis is extrapola-
tion. So while it is perilous, it is reasonable to extrape)ao long as you are clear about
what exactly you are doing.

ExamMpLE 3.3.5. Using again the statistics students' homework atad tourse points
data from Example 3.1.4, suppose the course instructoredantpredict what would be
the total course points for a student who had earned a pd@@gtoints on their homework.
Plugging into the LSRL, this would have yielded a gues¥6# 100+ 26976 = 102376
Of course, this would have been impossible, since the maxipussible total course score
was10Q Moreover, making this guess is an example of extrapolasimte thex value of
100is beyond the largestvalue ofxnax = 92 in the dataset. Therefore we should not rely
on this guess — as makes sense, since it is invalid by virtbeiofy larger thari00

3.3.4. Simpson's Paradox.Our last caution is not so much a way using the LSRL can
go wrong, but instead a warning to be ready for something ¥ewmnter-intuitive to happen
— S0 counter-intuitive, in fact, that it is called a paradox.

It usually seems reasonable that if some object is cut intogdigces, both of which
have a certain property, then probably the whole object lagsothat same property. But
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if the object in question is populationand the property ifias positive correlationthen
maybe the unreasonable thing happens.

DEFINITION 3.3.6. Suppose we have a population for which we have a bieaguan-
titative dataset. Suppose further that the population akdam into two (or more) sub-
populations for all of which the correlation between the tvepiables ispositive but the
correlation of the variables for the whole datasetegative Then this situation is called
Simpson's Paradox [It's also called Simpson's Paradox if the rolepdsitiveandnegative
is reversed in our assumptions.]

The bad news is that Simpson's paradox can happen.

ExXAMPLE 3.3.7. LetP = f(0;1); (1;0); (9; 10); (10; 9)g be a bivariate dataset, which
is broken into the two subpopulatioRs = f(0;1);(1;0)g andP, = f(9;10); (10; 9)g.
Then the correlation coef cients of bofh; andP, arer = 1, but the correlation of all
of P isr = :9756 This is Simpson's Paradox!

Or, in applications, we can have situations like

EXAMPLE 3.3.8. Suppose we collect data on two sections of a statisbarse, in
particular on how many hours per work the individual studesitidy for the course and
how they do in the course, measured by their total coursdgatrithe end of the semester.
It is possible that there is a strong positive correlatiotwieen these variables for each
section by itself, but there is a strong negative corretatithen we put all the students into
one dataset. In other words, it is possible that the ratiadeice, based on both individual
sections, isstudy more and you will do better in the courseit that the rational advice
based on all the student data put togethetusly less and you will do better
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Exercises

EXERCISE 3.1. The ageX) and resting heart rate (RHR) were measured for nine
men, yielding this dataset:

x: 20 23 30 37 35 45 51 60 63
y: 72 71 73 74 74 73 75 75 77

Make a scatterplot of these data.

Based on the scatterplot, what do you think the correlataet cient r will be?

Now compute .

Compute the LSRL for these data, write down its equation skedtch it on top of your
scatterplot.

[You may, of course, do as much of this with electronic toslgau like. However, you
should explain what tool you are using, how you used it, anatwtimust have been doing
behind the scenes to get the results which it displayed ancgeturning in.]

EXERCISE 3.2. Continuing with the data and computations of the prevjaroblem:

What percentage of the variation in RHR is associated witlatian in age?

Write the following sentences with blanks lled in: “If | meared the RHR of a 55
year-old man, | would expect it to be . Making an estimate like this is called

Just looking at the equation of the LSRL, what does it sugsfestild be the RHR of a
newborn baby? Explain.

Also explain what an estimate like yours for the RHR of a babygalled. This kind
of estimate is considered a bad idea in many cases — explainnwgeneral, and also use
speci cs from this particular case.

EXERCISE 3.3. Write down a bivariate quantitative dataset for a pafioih of only two
individuals whose LSRL i$=2x 1

What is the correlation coef cient of your dataset?

Next, add one more point to the dataset in such a way that yotcdwange the LSRL
or correlation coef cient.

Finally, can your nd a dataset with the same LSRL but havinigrger correlation
coef cient than you just had?

[Hint: fool around with modi cations or additions to the dasets in you already found
in this problem, using an electronic tool to do all the congtiginal work. When you nd a
good one, write it down and explain what you thinking was assgarched for it.]






Part 2

Good Data



It is something of an aphorism among statisticians that
The plural of anecdote is not dafa.

The distinction being emphasized here is between the irdbam we might get from a
personal experience or a friend's funny story — an anecdatad-the cold, hard, objective
information on which we want to base our scienti ¢ investigas of the world — data.

In this Part, our goal is to discuss aspects of getting godal damay seem counter-
intuitive, but the rst step in that direction is to developrse of the foundations qifrob-
ability theory, the mathematical study of systems which are non-detestigri# random
— but in a consistent way. The reason for this is that the staaied most reliable way to
ensure objectivity in data, to suppress personal choiceshwhay result in biased infor-
mation from which we cannot draw universal, scienti ¢ cargibns, is to collect your data
randomly Randomness is a tool which the scientist introduces iittieally and carefully,
as barrier against bias, in the collection of high qualitiad®ut this strategy only works if
we can understand how to extract precise information evémeipresence of randomness
— hence the importance of studying probability theory.

After a chapter on probability, we move on to a discussionashe fundamentals of
experimental desigr starting, not surprisingly, withandomization but nishing with
the gold standard for experiments (on humans, at leeestdomized, placebo-controlled,
double-blind experiments [RCTExperiments whose subjects are not humans share some,
but not all, of these design goals

It turns out that, historically, a number of experimentshaiuman subjects have had
very questionable moral foundations, so it is very impdrtarstop, as we do in the last
chapter of this Part, to build a outline experimental ethics

2It is hard to be certain of the true origins of this phrase. Pbétical scientist Raymond Wol nger
is sometimes given crediPB] — for a versionwithout the“not,” actually. Sometime later, then, it became
widespread with the “not.”



CHAPTER 4

Probability Theory

We want to imagine doing an experiment in which there is no tegyredict what the
outcome will be. Of course, if we stop our imagination thehere would be nothing we
could say and no point in trying to do any further analysise ttutcome would just be
whatever it wanted to be, with no pattern.

So let us add the additional assumption that whilecaenot predicivhat will happen
any particular time we do the experiment, wan predictgeneral trends, in the long run,
if we repeat the experiment many times. To be more preciseassame that, for any
collectionE of possible outcomes of the experiment there is a nump{e) such that, no
matter who does the experiment, no matter when they do hgif tepeat the experiment
many times, the fraction of times they would have seen angebttcomes of would be
close to that numbegi(E).

This is called thdrequentistapproach to the idea of probability. While it is not uni-
versally accepted — thBayesiaralternative does in fact have many adherents — it has the
virtue of being the most internally consistent way of builglia foundation for probability.
For that reason, we will follow the frequentist descriptadrprobability in this text.

Before we jump into the mathematical formalities, we shaulativate two pieces of
what we just said. First, why talk abosetsof outcomes of the experiment instead of
talking about individual outcomes? The answer is that weo#tien interested in sets of
outcomes, as we shall see later in this book, so it is nicettagséhe machinery from the
very start to work with such sets. Or, to give a particularaete example, suppose you
were playing a game of cards and could see your hand but nattiee players' hands.
You might be very interested in how likely is it that your has@ winning handi.e., what
is the likelihood of the set of all possible con gurationsaif the rest of the cards in the
deck and in your opponents' hands for which what you havelélthe winning hand? It
is situations like this which motivate an approach basedatsof outcomes of the random
experiment.

Another question we might ask is: where does our uncertaibout the experimental
results come from? From the beginnings of the scienti ¢ mdtthrough the turn of the
20" century, it was thought that this uncertainty came from agomplete knowledge of
the system on which we were experimenting. So if the experimas, say, ipping a
coin, the precise amount of force used to propel the coin upthe air, the precise angular
motion imparted to the coin by its position just so on the tbuoail of the person doing

53
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the ipping, the precise drag that the coin felt as it tumbtebugh the air caused in part
by eddies in the air currents coming from the ap of a buttés yings in the Amazon
rainforest — all of these things could signi cantly contite to changing whether the coin
would eventually come upeadsor tails. Unless the coin- ipper was a robot operating in a
vacuum, then, there would just be no way to know all of thesesiglal details with enough
accuracy to predict the toss.

After the turn of the20" century, matters got even worse (at least for physical deter
minists): a new theory of physics came along then, caledntum Mechani¢csgccording
to which true randomness is built into the laws of the unigerSor example, if you have
a very dim light source, which produces the absolutely sssafpossible “chunks” of light
(calledphotong, and you shine it through rst one polarizing Iter and theee if it goes
through a second lter at 45 angle to the rst, then half the photons will get through the
second lter, but there isbsolutely no way ever to predict whether any particulartpimo
will get though or not Quantum mechanics is full of very weird, non-intuitive ade but it
is one of the most well-tested theories in the history ofrsmée and it has passed every test.
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4.1. De nitions for Probability

4.1.1. Sample Spaces, Set Operations, and Probability Molde Let's get right to
the de nitions.

DEFINITION 4.1.1. Suppose we have a repeatable experiment we wantdstigate
probabilistically. The things that happen when we do theseixpent, the results of running
it, are called thedxperimental] outcomes The set of all outcomes is called teample
spaceof the experiment. We almost always use the syntbfar this sample space.

EXAMPLE 4.1.2. Suppose the experiment we are doing is “ ip a coin.efithe sample
space would b& = fH; Tg.

EXAMPLE 4.1.3. For the experiment “roll a [normal, six-sided] dihe sample space
would beS = f1,;2; 3; 4, 5; 69.

EXAMPLE 4.1.4. For the experiment “roll two dice,” the sample spaoceld be

S=111121314, 15,16,
21, 22,23, 24, 25, 26
31; 23, 33; 34, 35,36
41,42,43,44; 45, 46
51;52, 53,54, 55, 56
61,62 63; 64, 65 66

where the notationdfm” means ‘18t roll resulted in am, 2" in anm.”

EXAMPLE 4.1.5. Consider the experiment “ip a coin as many times asessary to
see the rstHead” This would have the in nite sample space

S=fH, TH;TTH; TTTH; TTTTH;:::g

EXAMPLE 4.1.6. Finally, suppose the experiment is “point a Geigemeer at a lump
of radioactive material and see how long you have to waitl timé next click.” Then the
sample spac8 is the set of all positive real numbers, because potentiaiywaiting time
could be any positive amount of time.

As mentioned in the chapter introduction, we are more isteckin

DEFINITION 4.1.7. Given a repeatable experiment with sample sfa@n eventis
any collection of [some, all, or none of the] outcomesSin.e., an event is angubsetE
of S, writtenE  S.
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There is one special set which is a subset of any other sethanefore is an event in
any sample space.

DEFINITION 4.1.8. The setg with no elements is called thempty set for which we
use the notation.

EXAMPLE 4.1.9. Looking atthe sample spa8e= fH; T gin Example 4.1.2, it's pretty
clear that the following are all the subsetsSof

fHg
fTg
S[=fH;Tq]

Two parts of that example are always tryeandS are always subsets of any $et
Since we are going to be working a lot with events, which alesets of a larger set,
the sample space, it is nice to have a few basic terms fronhsetyt:

DEFINITION 4.1.10. Given asubs& S of a larger sef, thecomplement ofE, is
the setE € = f all the elements o6 which are notin Eg.

If we describe an everE in words as all outcomes satis es some propefty the
complementary event, consisting of all the outcomes ndk jrcan be described as all
outcomes whictdon't satisfy X . In other words, we often describe the evé&iftas the
event ‘hot E.”

DEFINITION 4.1.11. Given two set8 andB, theirunion is the set

A [ B = fall elements which are iA or B [or both]g :

Now if eventA is those outcomes having propeXyandB is those with property,
the eveniA [ B, with all outcomes irA together with all outcomes iB can be described
as all outcomes satisfying or Y, thus we sometimes pronounce the evéxf “B” as “A
orB.

DEFINITION 4.1.12. Given two setd andB, theirintersectionis the set

A\ B = fall elements which are in both andB g :

If, as before, ever consists of those outcomes having prop&tandB is those with
propertyY, the eventA \ B will consist of those outcomes which satisfy bathandy .
In other words, A\ B” can be described a®\*and B .”

Putting together the idea of intersection with the idea af #pecial subsetof any set,
we get the
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DEFINITION 4.1.13. Two set®\ andB are calleddisjoint if A\ B = ;. In other
words, sets are disjoint if they have nothing in common.

A exact synonym for disjoint that some authors prefenigually exclusive. We will
use both terms interchangeably in this book.

Now we are ready for the basic structure of probability.

DEFINITION 4.1.14. Given a sample spaSea probability model onS is a choice of
areal numbeP (E) for every evenE S which satis es

(1) Forallevent&,0 P(E) 1.

(2) P(;)=1andP(S)=1.

(3) Forallevent&, P(E)=1 P(E).

(4) If A andB are any twdlisjointevents, the®® (A[ B) = P(A)+ P(B). [Thisis
called theaddition rule for disjoint events.]

4.1.2. Venn Diagrams.Venn diagrams are a simple way to display subsets of a xed
set and to show the relationships between these subsetsvandhe results of various
set operations (likeomplementunion andintersection on them. The primary use we
will make of Venn diagrams is for events in a certain sampkecsp so we will use that
terminology [even though the technique has much wider eain].

To make a Venn DiagranaJways start out by making a rectangle to represent the whole
sample space

Within that rectangle, we make circles, ovals, or just bjabsndicate that portion of
the sample space which is some event
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Sometimes, if the outcomes in the sample sgaad in the everA might be indicated
in the different parts of the Venn diagram. SoSiE fa;b;c;d¢jandA = fa;by S, we
might draw this as

ThecomplemenE € of an evenk is easy to show on a Venn diagram, since it is simply
everything which is not it :

If the lled part here isE ... thenthe lled part here i&°

This can actually be helpful in guring out what must beHs. In the example above with
S=fa;b;c;dyandA = fa;bg S, by looking at what is in the shaded exterior part for
our picture ofE €, we can see that for that, we would getA® = fc; dg.
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Moving now to set operations that work with two events, siggpee want to make a
Venn diagram with event& andB. If we know these events are disjoint, then we would
make the diagram as follows:

while if they are known not to be disjoint, we would use inst#ais diagram:

For example, i§ = fa;b;c;d), A = fa; g, andB = fb; @, we would have

When in doubt, it is probably best to use the version with lagerwhich then could
simply not have any points init (or could have zero probawhen we get to that, below).
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Venn diagrams are very good at showing unions, and inteosect

If the lled part here isA and the lled part here i8

then

the lled part hereisA[ B and the lled part here i\ B

Another nice thing to do with Venn diagrams is to use them as@aV aid for proba-
bility computations. The basic idea is to make a diagram shgtine various events sitting
inside the usual rectangle, which stands for the sampleespad to put numbers in various
parts of the diagram showing the probabilities of those tsy&m of the results of operations
(unions, intersection, and complement) on those events.

For example, if we are told that an evehthas probabilityP (A) = :4, then we can
immediately Il in the :4 as follows:
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But we can also put a number in the exterior of that circle Wiiepresent#\, taking
advantage of the fact that that exterioi%and the rule for probabilities of complements
(point (3) in De nition 4.1.14) to conclude that the appr@te numberid :4 = :6:

We recommend that, in a Venn diagram showing probabilityieslyou always put a
number in the region exterior to all of the events [but insile rectangle indicating the
sample space, of course]

Complicating a little this process of putting probabilitymbers in the regions of a
Venn diagram is the situation where we are giving for both\aaneand a subsetsubset,
of that event. This most often happens when we are told piiieedboth of some events
and of their intersection(s). Here is an example:

ExXAMPLE 4.1.15. Suppose we are told that we have two evardadB in the sample
spaceS, which satisfyP (A) = 4, P(B) = :5, andP(A\ B) = :1. First of all, we know
thatA andB are not disjoint, since if they were disjoint, that would me€hy de nition)
thatA\ B = ;,andsincé’(;) =0 butP(A\ B) 6 0, that is not possible. So we draw a
Venn diagram that we've see before:

However, it would be unwise simply to write those given numsbé, :5, and:1 into the
three central regions of this diagram. The reason is thattineber:1 is the probability of
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A\ B, which is a part oA already, so if we simply write4 in the rest ofA, we would be
counting thatl for theA\ B twice. Therefore, before we write a number in the resh pf
outside ofA \ B, we have to subtract thé for P(A\ B). That means that the number
which goes in the rest oA should be4 :1 = :3. A similar reasoning tells us that the
number in the part oB outside ofA\ B, should be5 :1 = :4. That means the Venn
diagram with all probabilities written in would be:

The approach in the above example is our second importantmeendation for who
to put numbers in a Venn diagram showing probability valabsays put a number in each
region which corresponds to the probability of that smdllesnnected region containing
the number, not any larger region

One last point we should make, using the same argument a® iabibve example.
Suppose we have evemisandB in a sample spac8 (again). Suppose we are not sure
if A andB are disjoint, so we cannot use the addition rule for disjeirgnts to compute
P(A[ B). But notice that the events andA° are disjoint, so thaf \ B andA°®\ B are
also disjoint and

A=A\ S=A\ (B[ BY=(A\ B)[ (A\ BY

is a decomposition of the eveAtinto the two disjoint eventd \ B andA°\ B. From the
addition rule for disjoint events, this means that

P(A)= P(A\ B)+ P(A\ BY):
Similar reasoning tells us both that
P(B)= P(A\ B)+ P(A°\ B)

and that
A[ B=(A\ BY)[ (A\ B)[ (A°\ B)
is a decomposition oA [ B into disjoint pieces, so that

P(A[ B)= P(A\ BY+ P(A\ B)+ P(A°\ B):
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Combining all of these equations, we conclude that

P(A)+ P(B) P(A\ B)=P(A\ B)+ P(A\ B9+ P(A\ B)+ P(A°\ B) P(A\ B)
P(A\ B®+ P(A\ B)+ P(A°\ B)+ P(A\ B) P(A\ B)
P(A\ B+ P(A\ B)+ P(A°\ B)

P(A[ B):

This is important enough to state as a

FacT 4.1.16. The Addition Rule for General Events If A andB are events in a
sample spac8 then we have the addition rule for their probabilities

P(A[ B)= P(A)+ P(B) P(A\ B):
This rule is true whether or ndt andB are disjoint.

4.1.3. Finite Probability Models. Here is a nice situation in which we can easily cal-
culate a lot of probabilities fairly easily: if the sampleaspeS of some experiment isite .

So let's suppose the sample space consists of just the oag®m fo,;0,;:::;0,0.
For each of the outcomes, we can compute the probability:

P =P (f0.0)
P2 =P (f0:0)

Pn =P (f0,0)

First of all, since they are each the probability of an evemtsee that

0O pp 1
0 pp 1
O pp 1
Furthermore, sinc8 = fo;;0;;:::;0,0= fo,g[f o,g[ [f o0,gand all of the events
fo,g;f0.0;:::;f0o,0 are disjoint, by the addition rule for disjoint events we &éav
1=P(S)= P(foy;0;::1;0n0)

=P(fog[f og[ [f 0,0
= P(fog)+ P(fo,g)+  + P(fo,0)
= prtpt + Pn:
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The nal thing to notice about this situation of a nite sane@dpace isthatiE Sis

(maybe none, maybe all, maybe an intermediate nhumber).eSagain, the events like
f 0,g andf 0,g and so on are disjoint, we can compute

P(E) = P(fthe outcomes; which make ugE g)
X
= fthep;'s for the outcomes ifE g :

In other words

FACT 4.1.17. A probability model on a sample spe&eavith a nite number,n, of

from 0 to 1 and satisfyingp; + p, + + p, = 1. For such a choice of numbers, we can
compute the probability of any eveit S as
X

P(E) = fthep; 's corresponding to the outcomeswhich make ugeg:

EXAMPLE 4.1.18. For the coin ip of Example 4.1.2, there are only thve butcomes
H andT for which we need to pick two probabilities, call thgmandg. In fact, since the
total must bel, we know thap+ q=1 or, in other wordsg=1 p. The the probabilities
for all events (which we listed in Example 4.1.9) are

P(;)=0
P(fHg) = p
PfTg)=dq=1 p

P(fH;Tg)=p+q=1

What we've described here is, potentiallypesed coin since we are not assuming
thatp = g— the probabilities of getting a head and a tail are not asdumée the same.
The alternative is to assume that we havaiacoin, meaning thap = g. Note that in such
acase, sincp+ q=1, we have2p = 1 and sop = 1=2. That is, the probability of a head
(and, likewise, the probability of a tail) in a single throeaofair coin is1=2.

EXAMPLE 4.1.19. As in the previous example, we can consider the diExaim-
ple 4.1.3 to dair die, meaning that the individual face probabilities are allshene. Since
they must also total ta (as we saw for all nite probability models), it follows that

PL=P2=P3=Ps=Ps= Ps =16
We can then use this basic information and the formulaRf()) in Fact 4.1.17 to com-
pute the probability of any event of interest, such as
1 1 1 3
P (“roll nN)=P(f2,4,60)= -+ -+ = - =
(“roll was even)) (f2;4;69Q) cT676 ¢
We should immortalize these last two examples with a

NI =
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DEFINITION 4.1.20. When we are talking about dice, coins, individuatsbme task,
or another small, practical, nite experiment, we use themtéair to indicate that the
probabilities of all individual outcomes are equal (anddhere all equal to the the number
1=n, wheren is the number of outcomes in the sample space). A more tealeion for
the same idea isquiprobable, while a more casual term which is often used for this in
very informal settings is&t random” (such as “pick a carét randomfrom this deck” or
“pick a random patient from the study group to give the newttreent to...”).

EXAMPLE 4.1.21. Suppose we look at the experiment of Example 4.1d4add the
information that the two dice we are rolling af@r. This actually isn't quite enough to
gure out the probabilities, since we also have to assuretti@fair rolling of the rst die
doesn't in any way affect the rolling of the second die. Thigeichnically the requirement
that the two rolls bendependentbut since we won't investigate that carefully un.2,
below, let us instead here simply say that we assume the tigoare fair and are in fact
completely unin uenced by anything around them in the wanlcluding each other.

What this means is that, in the long run, we would expect tts die to show &l
roughly %th of the time, and in the very long run, the second die would shdwoughly
%th of thosetimes. This means that the outcome of the “roll two dice” ekpent should be
11 with probability% — and the same reasoning would show that all of the outcomes ha
that probability. In other words, this is an equiprobablmpke space witt86 outcomes
each having probabilitg%. Which in turn enables us to compute any probability we might
like, such as

P (“sum of the two rolls i#4”) = P(f 13,22 31g)

1 1 1
= —+ —+ —
36 36 36
_ 3
"~ 36
1-

1_2 .
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4.2. Conditional Probability

We have described the whole foundation of the theory of gridhaas coming from
imperfect knowledgen the sense that we don't know for sure if an ev&will happen any
particular time we do the experiment but we do know, in theylaim, in what fraction of
timesA will happen. Or, at least, we claim that there is some nur{ér) such that after
running the experimeritl times, out of whichn, of these times are whefA happened,

P (A) is approximatelyn,=N (and this ratio gets closer and closerRgA) asN gets
bigger and bigger).

But what if we havesomeknowledge? In particular, what happens if we know for sure
that the evenB has happened — will that in uence our knowledge of whethdrappens
or not? As before, when there is randomness involved, weataeh for sure ifA will
happen, but we hope that, given the knowledge Bhdtappened, we can make a more
accurate guess about the probabilityrof

EXAMPLE 4.2.1. If you pick a person at random in a certain country omiqular
date, you might be able to estimate the probability that #rwsqgn had a certain height if
you knew enough about the range of heights of the whole ptpaolaf that country. [In
fact, below we will make estimates of this kind.] That is, i&e ne the event

A = “the random person is taller thdm829meters 6 feet)”

then we might estimate (A).
But consider the event

B = “the random person's parents were both taller tha&829meters™

Because there is a genetic component to height, if you knavBhhappened, it would
change your idea of how likely, given that knowledge, thdtappened. Because genetics
are not the only thing which determines a person's height,would not be certain thak
happened, even given the knowledgdof

Let us use the frequentist approach to derive a formula ferkind of probability of A
given thatB is known to have happene&o think about doing the repeatable experiment
many times, sail times. Out of all those times, some tim@dappens, say it happeng
times. Out othosetimes, the ones whei happened, sometimésalso happened. These
are the cases where bothandB happened — or, converting this to a more mathematical
descriptions, the times that\ B happened — so we will write i\ g .

We know that the probability oA happening in the cases where we know for sure that
B happened is approximatefyy, g =ng. Let's do that favorite trick of multiplying and
dividing by the same number, so nding that the probabilitywhich we are interested is
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approximately

Nave _ Nave N _ navg N Nave  Ng '
= = EA U8 pa\ B) P(B
Ng N ng N Ng N N ( ) ( )

Which is why we make the

DEFINITION 4.2.2. Theconditional probability of the event A given the eventB is
P(A\ B) .

P(B)
HereP (AjB) is pronouncedhe probability ofA givenB.

P(AjB) =

Let's do a simple

EXAMPLE 4.2.3. Building off of Example 4.1.19, note that the proliapdf rolling
a2isP(f2g) = 1=6 (as is the probability of rolling any other face — itdair die). But
suppose that you were told that the roll was even, which isteatf 2; 4; 69, and asked
for the probability that the roll was 2given this prior knowledge. The answer would be
P(f2g\f 2,4,609)  P(f29) _ 16

P(f24,69)  P(f24,6g 1=2
In other words, the probability of rolling2o0n a fair die with no other information =6,
which the probability of rolling & given that we rolled an even numberls3. So the
probability doubled with the given information.

Sometimes the probability changes even more than merellidgu the probability
that we rolled al with no other knowledge i$=6, while the probability that we rolled &
given that we rolled an even number is

oo P(flg\f 2,4;69) _ P(;) _ O
Pt1g]12460) = P(f2 4,690  P(f24.6g) 1=2

But, actually, sometimes the conditional probability fomse event is the same as the
unconditioned probability. In other words, sometimes kimgathatB happened doesn't
change our estimate of the probabilityAfat all, they are no really related events, at least
from the point of view of probability. This motivates the

=1=3:

P(f29f2 4;60) =

=0:

DEFINITION 4.2.4. Two eventé andB are calledndependentif P(A jB) = P(A).

Plugging the de ning formula foP (A j B) into the de nition of independentit is
easy to see that

FACT 4.2.5. Event#\ andB are independent if and only#(A\ B) = P(A) P(B).

EXAMPLE 4.2.6. Still using the situation of Example 4.1.19, we sakxample 4.2.3
that the events2g andf 2; 3; 4g are not independent since

P(f2g)=1=66 1=3= P(f2g] f2; 4 6g)
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nor aref 1g andf 2; 3; 4g, since
P(flg)=1=660= P(flgf2;4;6q) :
However, look at the eventd,; 2g andf 2; 4; 69:
P(f1,29) = P(flg)+ P(f2g9)=1=6+1=6
=1=3
16
S 1=2
P(f 19)

P (f 2; 4, 69)
P(f1,2g9\f 2;4;69)
P (f 2; 4; 69)
= P(f1,29]f2 4;69)

which means that they are independent!

EXAMPLE 4.2.7. We can now fully explain what was going on in ExampleZl. The
two fair dice were supposed to be rolled in a way that the it had no effect on the
second — this exactly means that the dice were rofiddpendentlyAs we saw, this then
means that each individual outcome of sample sigabtad probability3—16. But the rst
roll having any particular value is independent of the secanll having anothere.g, if
A= 111121314, 15 16gis the event in that sample space of gettingan the rst roll
andB = f14; 24; 34; 44; 54; 64g is the event of getting 4 on the second roll, then events
A andB are independent, as we check by using Fact 4.2.5:

P(A\ B)= P(f14g)

P(A) P(B):

On the other hand, the event “the sum of the rolld,iswhich isC = 13,22, 31g as a
set,is not independertdf the value of the rstroll, sincd®(A\ C) = P(f13g) = 3—16 but
P(A) P(C)= & 2=1 1=-1

36 36 6 12 72
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4.3. Random Variables

4.3.1. De nition and First Examples. Suppose we are doing a random experiment
and there is some consequence of the result in which we aregstéd that can be measured
by a number. The experiment might be playing a game of chamdehe result could be
how much you win or lose depending upon the outcome, or therarpnt could be which
part of the drives' manual you randomly choose to study aeddsult how many points
we get on the driver's license test we make the next day, oexperiment might be giving
a new drug to a random patient in medical study and the resuitdvbe some medical
measurement you make after treatment (blood pressures Wloibd cell count, whatever),
etc. There is a name for this situation in mathematics

DEFINITION 4.3.1. A choice of a number for each outcome of a random exyaeti is
called arandom variable [RV]. If the values an RV takes can be counted, because they
are either nite or countably in nité in number, the RV is callediscrete if, instead, the
RV takes on all the values in an interval of real numbers, iésRtalledcontinuous

We usually use capital letters to denote RVs and the correlpg lowercase letter to
indicate a particular numerical value the RV might haves Kk andx.

EXAMPLE 4.3.2. Suppose we play a silly game where you pay me $5 tothlay,l ip
a fair coin and | give you $10 if the coin comes up heads and §@dmes up tails. Then
your net winnings, which would be +$5 or -$5 each time you péag a random variable.
Having only two possible values, this RV is certainly disere

EXAMPLE 4.3.3. Weather phenomena vary so much, due to such smaiteffesuch
as the famous butter y apping its wings in the Amazon raindet causing a hurricane in
North America — that they appear to be a random phenomenaoegrefdre, observing the
temperature at some weather station is a continuous randdable whose value can be
any real number in some range liket0Oto 100(we're doingscienceso we useC).

EXAMPLE 4.3.4. Suppose we look at theofl two fair dice independentlyexperiment
from Example 4.2.7 and Example 4.1.21, which was based opriigability model in
Example 4.1.21 and sample space in Example 4.1.4. Let usdeons this situation the
random variablé&X whose value for some pair of dice rolls is the sum of the two bers
showing on the dice. So, for exampk(11) = 2, X (12) = 3, etc.

There many kinds of in nity in mathematics — in fact, an inteinumber of them. The smallest is an
in nity that can be counted, like the whole numbers. But ttiegre are many larger in nities, describing sets
that are too big even to be counted, like the set of all reallrann
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In fact, let's make a table of all the valuesXf

X (11) = 2
X (21) = X (12) = 3
X (31)= X(22) = X (13) =4
X (41) = X (32) = X (23) = X (14) =5
X (51) = X (42) = X (33) = X (24) = X (15) =6
X (61) = X (52) = X (43) = X (34) = X (25) = X (16) = 7
X (62) = X (53) = X (44) = X (35) = X (26) = 8
X (63) = X (54) = X (45) = X (36) = 9

X (64) = X (55) = X (46) = 10

X (65) = X (56) = 11

X (66) = 12

4.3.2. Distributions for Discrete RVs. The rst thing we do with a random variable,
usually, is talk about the probabilities associate with it.

DEFINITION 4.3.5. Given a discrete RX , its distribution is a list of all of the values
X takes on, together with the probability of it taking thatual

[Note this is quite similar to De nition 1.3.5 — because igissentially the same thing.]

EXAMPLE 4.3.6. Let's look at the RV, which we will caK , in the silly betting game
of Example 4.3.2. As we noticed when we rst de ned that gariere are two possible
values for this RV, $5 and -$5. We can actually think ¥f = 5" as describing an event,
consisting of the set of all outcomes of the coin- ipping exinent which give you a net
gain of $5. Likewise, X = 5" describes the event consisting of the set of all outcomes
which give you a net gain of -$5. These events are as follows:
Set of outcomes
such thaiX (o) = x
5 fHg
5 ‘ fTg
Since it is a fair coin so the probabilities of these evengskarown (and very simple), we
conclude that the distribution of this RV is the table

X ‘ P(X =Xx)

5‘ 1=2

5 1=2
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EXAMPLE 4.3.7. What about th¥ = ”sum of the face valuéRV on the “roll two fair
dice, independentlyandom experiment from Example 4.3.4? We have actuallyaaly
done most of the work, nding out what values the RV can takeé which outcomes cause
each of those values. To summarize what we found:

x

Set of outcomes
such thaiX (o) = x

©O© 00 ~NO Ol WM

N =
= O

12

f1lg

f21,12g

31,22 139
f41;32 23,149
f51;42 33 24, 15
f61;52 43, 34; 25, 169
f62 53; 44; 35, 269
f63,54; 45; 369

f 64; 55, 469

f 65; 569

f 669

But we have seen that this is an equiprobable situation, eviiner probability of any event
A containn outcomes i (A) = n 1=36, so we can instantly Il in the distribution table
for this RV as

P(X = x)

o
P Rle&l-

© 00 ~N O U~ w N|X

[EEN
o

H
H

eI glwoglsgloBlo o gls gle v gl-
&l-Rl= 2=

=
N

One thing to notice about distributions is that if we makeeiprinary table, as we just
did, of the events consisting of all outcomes which give dipalar value when plugged
into the RV, then we will have a collection of disjoint eventisich exhausts all of the sam-
ple space. What this means is that the sum of the probabdlltyeg in the distribution table
of an RV is the probability of the whole sample space of thasRXperiment. Therefore
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FACT 4.3.8. The sum of the probabilities in a distribution tatwe & random variable
must always equadl.

It is quite a good idea, whenever you write down a distribuytio check that this Fact
is true in your distribution table, simply as a sanity cheghiast simple arithmetic errors.

4.3.3. Expectation for Discrete RVs.Since we cannot predict what exactly will be
the outcome each time we perform a random experiment, weotanedict with precision
what will be the value of an RV on that experiment, each timat, Bs we did with the basic
idea of probability, maybe we can at least learn somethiog fthe long-term trends. It
turns out that it is relatively easy to gure out the mean eatii an RV over a large number
of runs of the experiment.

Say X is a discrete RV, for which the distribution tells us thattakes the values

probability says that the probability thatX = X; is (approximatelyn;=N, wheren; is
the number of timeX = x; out of a large numbéaX of runs of the experiment. But if
pi = Nni=N
then, multiplying both sides b,
ni=piN:

That means that, out of thé runs of the experimeni will have the valuex; in p; N
runs, the value, in p, N runs,etc. So the sum oK over thoseN runs will be

(PtN)Xs+(p2N)x2+  +(paN)X;q -

Therefore the mean value ¥f over theseN runs will be the total divided biN, which is
P X1 + + pnXn. This motivates the de nition

is the value X

EX)= px:
By what we saw just before this de nition, we have the follogi

FACT 4.3.10. The expectation of a discrete RV is the mean of itsegbver many runs
of the experiment.

Note: The attentive reader will have noticed that we dealt abowe with the case of
a nite RV, not the case of a countably in nite one. It turnstdbat all of the above works
quite well in that more complex case as well, so long as onensfartable with a bit of
mathematical technology calleddmming an in nite serie$ We do not assume such a
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comfort level in our readers at this time, so we shall pass theedetails of expectations of
in nite, discrete RVs.

EXAMPLE 4.3.11. Let's compute the expectation of net pro t RV in the silly bet-
ting game of Example 4.3.2, whose distribution we computeeixample 4.3.6. Plugging

straight into the de nition, we see

X 1
E(X) = piXizé

In other words, your average net gain playing this silly ganaay times will bezero. Note
that does not mean anything liké {ou lose enough times in a row, the chances of starting
to win again will go ug’ as many gamblers seem to believe, it just means that, inghe
long run, we can expect the average winnings to be approglynzgéro — but no one knows
how long that run has to be before the balancing of wins arskhappers

5+% ( 5)=25 25=0:

A more interesting example is

EXAMPLE 4.3.12. In Example 4.3.7 we computed the distribution ofrdrelom vari-
ableX = “sum of the face valuésn the “roll two fair dice, independentfyrandom ex-
periment from Example 4.3.4. Itis therefore easy to plug/tiaes of the probabilities and

RV values from the distribution table into the formula foipextation, to get
X
EX)=  px

1 2 3 4 5 6 5 4 3
= 36 2+3_6 3+§5 4+§5 5+§5 6+3_6 7+3_6 8+3_6 9+§5 10

2 1
+ — + —
36 11 36 12

2 1+3 2+4 3+5 4+6 5+7 6+8 5+9 4+10 3+11 2+12 1
36

=7

So if you roll two fair dice independently and add the numlvengch come up, then do this
process many times and take the average, in the long runvéiatge will be the valu@.

4.3.4. Density Functions for Continuous RVs.What about continuous random vari-
ables? De nition 4.3.5 oflistribution explicitly excluded the case of continuous RVs, so
does that mean we cannot do probability calculations indase?

There is, when we think about it, something of a problem hérdistribution is sup-
posed to be a list of possible values of the RV and the proibabil each such value. But
if some continuous RV has values which are an interval of meahbers, there is just no
way to list all such numbers — it has been known since the B@@4 that there is no way to
make a list like that (se@Nik17a], for a description of a very pretty proof of this fact). In

2In fact, in a very precise sense which we will not discuss is ook, the longer you play a game like
this, the more you can expect there will be short-term, boyt large, wins and losses.
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addition, the chance of some random process producing aueaber that i€xactlyequal
to some particular value really is zero: for two real numlerse precisely equal requires
in nite accuracy ... think of all of those decimal digits, neaing off in orderly rows to
in nity, which must match between the two numbers.

Rather than a distribution, we do the following:

DEFINITION 4.3.13. LetX be a continuous random variable whose values are the real
interval[Xmin ; Xmax ], Where eithek,i, orXmax Or both may bé . A [probability ] density
function for X is a functionf (x) de ned for X in [Xmin ; Xmax ], Meaning it is a curve with
oney value for eaclx in that interval, with the property that

the area in thay-plane above thg-axis, below

Pla<X<b)= :
@ ) the curvey = f (x) and betweex = aandx = h.

Graphically, what is going on here is

Because of what we know about probabilities, the followisigyue (and fairly easy to
prove):

FACT 4.3.14. Supposk(x) is a density function for the continuous R¥/ de ned on
the real intervalXmin ; Xmax ]. Then

For all X in [Xmin ; Xmax ], f (X) 0.
The total area under the curye= f (x), above the-axis, and betweexr = Xp;n
andX = Xmax IS 1.

If we want the idea opicking a real number on the interv@tmin ; Xmax ] at random
whereat randommeans that all numbers have the same chance of being pideed the
lines offair in De nition 4.1.20, the height of the density function mims the same at all
X. In other words, the density functidr(x) must be a constanmt In fact, because of the
above Fact 4.3.14, that constant must have the vxaluém There is a name for this:

max X



4.3. RANDOM VARIABLES 75

DEFINITION 4.3.15. Theuniform distribution on [Xmin ; Xmax ] 1S the distribution for
the continuous RV whose values are the intef¥al, ; Xmax ] @nd whose density function
is the constant functioh(x) = ——.

ax  Xmin

EXAMPLE 4.3.16. Suppose you take a bus to school every day and bemfaausbaotic
home life (and, let's face it, you don't like mornings), yoetgo the bus stop at a pretty
nearly perfectly random time. The bus also doesn't stickgu#ly to its schedule — but it
is guaranteed to come at least ev8Bminutes. What this adds up to is the idea that your
waiting time at the bus stop is a uniformly distributed RV bg tnterval[0; 30}

If you wonder one morning how likely it then is that you will Wwdor less thanl10
minutes, you can simply compute the area of the rectangls&hbase is the intervi; 10]

on thex-axis and whose height % which will be
o 1 1
P(0< X < 10) = base height= 10 30 3
A picture which should clarify this is

where the area of the shaded region represents the prapaifilhaving a waiting time
from 0 to 20 minutes.

One technical thing that can be confusing about continuMssaRd their density func-
tions is the question of whether we should witéa < X <b)orP(a X b). Butif
you think about it, we really have three possible events:here

A = foutcomes such that = ag;
M = foutcomes such that< X <b g; and
B = foutcomes such that = bg:

SinceX always takes on exactly one value for any particular outgdhere is no overlap
between these events: they are all disjoint. That means that

P(AL M [ B)=P(A)+ P(M)+ P(B)= P(M)

where the last equality is because, as we said above, thalphtp of a continuous RV
taking on exactly one particular value, as it would in evénendB, is 0. The same would
be true if we added merely one endpoint of the intefaalb). To summarize:



76 4. PROBABILITY THEORY

FACT 4.3.17. IfX is a continuous RV with values forming the interah, ; Xmax |
anda andbare in this interval, then

P(a<X<b)=P(a<X Db=P(@a X<b)=Pa X b:

As a consequence of this fact, some authors write probafmlimulae about continuous
RVs with “ < " and some with “ " andit makes no difference
Let's do a slightly more interesting example than the umifalistribution:

EXAMPLE 4.3.18. Suppose you repeatedly throw darts at a dartboand'reYnot a
machine, so the darts hit in different places every time andtitink of this as a repeatable
random experiment whose outcomes are the locations of ttieodahe board. You're
interested in the probabilities of getting close to the eepf the board, so you decide for
each experimental outcome (location of a dart you threw) éasure its distance to the
center — this will be your R .

Being good at this game, you hit near the center more thanthe&adge and you never
completely miss the board, whose radiud@&m— soX is more likely to be nea®d than
nearlQ, and it is never greater thd). What this means is that the RV has values forming
the interval[0; 10] and the density function, de ned on the same interval, sthdwalve its
maximum value ax = 0 and should go down to the val@evhenx = 10.

You decide to model this situation with the simplest den&ityction you can think of
that has the properties we just noticed: a straight line filoerhighest point of the density
function whenx = 0 down to the poin{10; 0). The gure that will result will be a triangle,
and since the total area must band the base i$0 units long, the height must b2 units.
[To get that, we solved the equati@n= %bh = %10{1 = 5h for h.] So the graph must be

and the equation of this linear density function wouldybe 5—10x + :2 [why? — think
about the slope anglintercept!].

To the extent that you trust this model, you can now calculserobabilities of events
like, for example, hitting the board within that center bull's-eye of raditisscm,” which
probability would be the area of the shaded region in thiplgra
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The upper-right corner of this shaded region ig-abordinatel:5 and is on the line, so its
y-coordinate is 5—101:5 +:2 = :17. Since the region is a trapezoid, its area is the distance
between the two parallel sides times the average of thelermjthe other two sides, giving

2+ :17

PO<X< 15)=15 = :12775:

In other words, the probability of hitting the bull's-eyessaiming this model of your dart-
throwing prowess, is abo@8%.

If you don't remember the formula for the area of a trapezgaly can do this problem
another way: compute the probability of the complementaeng and then take one minus
that number. The reason to do this would be that the complemeeavent corresponds to
the shaded region here

which is a triangle! Since we surely do remember the formaoitdlfe area of a triangle, we
nd that 1 1

P(1:5<X< 10)= ébh= é:17 85 =:7225
and therefor? (0< X < 1.5)=1 P(Ll5<X < 10)=1 :7225=:2775 [It's nice
that we got the same number this way, too!]

4.3.5. The Normal Distribution. We've seen some examples of continuous RVs, but
we have yet to meet the most important one of all.

DEFINITION 4.3.19. TheNormal distribution with mean « and standard deviation
x is the continuous RV which takes on all real values and is gwaby the probability
density function

(x_ x)?

1 x x)7
(X) = p=—=e 2x° :
2 x?
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If X is arandom variable which follows this distribution, thea say thaiX is Normally
distributed with mean x and standard deviation x or, in symbolsX iSN( x; x)-

[More technical works also call this tH@aussian distributionnamed after the great
mathematiciaiCarl Friedrich Gauss But we will not use that term again in this book after
this sentence ends.]

The good news about this complicated formula is that we deally have to do any-
thing with it. We will collect some properties of the Normasulibution which have been
derived from this formula, but these properties are usefaligh, and other tools such as
modern calculators and computers which can nd speci ¢ anea need under the graph
ofy = (x), that we won't need to work directly with the above formula f¢x) again.

It is nice to know thalN ( x; x) does correspond to a speci ¢, known density function,
though, isn'tit?

It helps to start with an image of what the Normal distribatlooks like. Here is the
density function for x =17 and x = 3:

Now let's collect some of these useful facts about the Nomiisttibutions.

FACT 4.3.20. The density functionfor the Normal distributiomN ( x ; x) is a positive
function for all values ok and the total area under the cugve  (x) is 1.

This simply means that is a good candidate for the probability density function for
some continuous RV.

FACT 4.3.21. The density functionfor the Normal distributiomN ( x; x ) is unimodal
with maximum atx-coordinate .
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This means thall ( x; x) is a possible model for an RX which tends to have one
main, central value, and less often has other values fagvay. That center is at the
location given by the parametex , so wherever we want to put the center of our model for
X, we just use that fory .

FACT 4.3.22. The density functionfor the Normal distributiolN ( x; x) is is sym-
metric when re ected across the like= .

This means that the amouxt misses its centery , tends to be about the same when it
misses aboveyx and when it misses below . This would correspond to situations were
you hit as much to the right as to the left of the center of aldetd. Or when randomly
picked people are as likely to be taller than the averagenberythey are to be shorter. Or
when the time it takes a student to nish a standardized teasilikely to be less than the
average as it is to be more than the average. Or in many, mhay aseful situations.

FACT 4.3.23. The density function for the Normal distributioN ( x; x) has has
tails in both directions which are quite thin, in fact getrextely thinas< ! 1 , but
never go all the way to.

This means thaN ( x; x) models situations where the amoutitdeviates from its
average has no particular cut-off in the positive or negativection. So you are throwing
darts at a dart board, for example, and there is no way to krmswfér your dart may hit to
the right or left of the center, maybe even way off the board down the hall — although
that may be very unlikely. Or perhaps the time it takes to detepgsome task is usually a
certain amount, but every once and a while it might take muokertime, so much more
that there is really no natural limit you might know aheadiwig.

At the same time, those tails of the Normal distribution aré¢rsn, for values far away
from , that it can be a good model even for a situation where themenetural limit to
the values oX above or below x . For example, heights of adult males (in inches) in the
United States are fairly well approximated by(69; 2:8), even though heights can never
be less tha® andN (69; 2:8) has an in nitely long tail to the left — because while that tai
isnon-zero alltheway as! 1, itis very, very thin.

All of the above Facts are clearly true on the rst graph we s&a Normal distribution
density function.

FACT 4.3.24. The graph of the density functiofor the Normal distributiomN ( x; x)
has a taller and narrower peak jf is smaller, and a lower and wider peak §f is larger.

This allows the statistician to adjust how much variatiogréhtypically is in a normally
distributed RV: By making x small, we are saying that an R¥ which isN( x; x) is
very likely to have values quite close to its center, If we make x large, howeverX
is more likely to have values all over the place — still, ceatieat yx, but more likely to
wander farther away.
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Let's make a few versions of the graph we saw favhen x wasl7and x was3, but
now with different values ofy . First, if x =1, we get

If, instead, x =5, then we get

Finally, let's superimpose all of the above density funetian each other, for one,
combined graph:
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This variety of Normal distributions (one for each and ) is a bit bewildering, so
traditionally, we concentrate on one particularly nice.one

DEFINITION 4.3.25. The Normal distribution with meag = 0 and standard deviation
x = 1 is called thestandard Normal distribution and an RV [often written with the
variableZ] that isN (0; 1) is described as standard Normal RV.

Here is what the standard Normal probability density fusrctooks like:
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One nice thing about the standard Normal is that all othenidistributions can be
related to the standard.

FACT 4.3.26. IfX isN( x; x),thenZ =(X x )= x Is standard Normal.
This has a name.

DEFINITION 4.3.27. The process of replacing a random varixblghich isN ( x; x)
with the standard normal R¥ = ( X x )= x Is calledstandardizing a Normal RV.

It used to be that standardization was an important steplwngpoproblems with Nor-
mal RVs. A problem would be posed with information about salat that was modelled
by a Normal RV with given meany and standardizatiory . Then questions about proba-
bilities for that data could be answered by standardiziegR¥ and looking up values in a
single table of areas under the standard Normal curve.

Today, with electronic tools such as statistical calcultmd computers, the standard-
ization step is not really necessary.

EXAMPLE 4.3.28. As we noted above, the heights of adult men in theedrftates,
when measured in inches, give a RV which is N (69;2:8). What percentage of the
population, then, is taller thabfeet?

First of all, the frequentist point of view on probabilityleeus that what we are inter-
ested in is the probability that a randomly chosen adult Acaermale will be taller than
6 feet — that will be the same as the percentage of the popnlttis tall. In other words,
we must nd the probability thaK > 72, since in inches6 feet becomed2 As X is a
continuous RV, we must nd the area under its density curvactvis the for N (69; 2:8),
between72and1l .

Thatl is a little intimidating, but since the tails of the Normakttibution are very
thin, we can stop measuring area wheis some large number and we will have missed
only a very tiny amount of area, so we will have a very good agipnation. Let's therefore
nd the area under from x = 72 up tox = 1000. This can be done in many ways:

With a wide array of online tools — just search for “online mad probability
calculator.” One of these yields the valu&2
With aTI-8x calculator, by typing

normalcdf(72, 1000, 69, 2.8)
which yields the valuel419884174The general syntax here is
normalcdf(a, b, x, x)

to nd P(a<X <b)whenX isN( x; x). Note you gehormalcdf by typing

[2ND |! [VARS]! 2
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Spreadsheets likkibreOf ce Calc and Microsoft Excel will compute this by
putting the following in a cell

=1-NORM.DIST(72, 69, 2.8, 1)
giving the value 0.1419883859. Here we are using the command
NORM.DIST(b, x, x, 1)

which computes the area under the density functiomMfory ; x) from 1 toh.
[The last input of “1” toNORM.DISTjust tells it that we want to compute the area
under the curve. If we used “0” instead, it would simple talkine particular value
of (b), which is of very direct little use in probability calculatis.] Therefore,
by doingl NORM:DIST (72;69; 2:8; 1), we are taking the total area of 1 and
subtracting the area to the left of 72, yielding the area éxipht, as we wanted.

Therefore, if you want the area betwesandbon anN( x; x) RV using a
spreadsheet, you would put

=NORM.DIST(b, x, x, 1) - NORM.DIST( a, x, x, 1)

in a cell.

While standardizing a non-standard Normal RV and then logkip values in a table
is an old-fashioned method that is tedious and no longelyreakded, one old technique
still comes in handy some times. It is based on the following:

FACT 4.3.29. The 68-95-99.7 Rule Let X be anN( x; x) RV. Then some special
values of the area under the graph of the density cufee X are nice to know:

The area under the graph ofromx = x tox = x + x,alsoknown as
P(x x<X< x+ x),is.68.

The area under the graph ofromx = y 2 x tox = x +2 x, also known
asP(x 2x<X< x+2x),is.95.

The area under the graph ofromx = x 3 x tox = x +3 x, also known
asP( x 3x <X< x+3),Iis.997.

This is also calledhe Empirical Rule by some authors. Visuafly

3By Dan Kernler - Own work, CC BY-SA 4.Mhttps://commons.wikimedia.org/w/index.
php?curid=36506025
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In order to use the 68-95-99.7 Rule in understanding a péatisituation, it is helpful
to keep an eye out for the numbers that it talks about. Thexgifthen looking at a problem,
one should notice if the numberg + x, «x x, x ¥2 x, x 2x, x +3 x,or

x 3 x are ever mentioned. If so, perhaps this Rule can help.

EXAMPLE 4.3.30. In Example 4.3.28, we needed to compRi(X > 72) whereX
was known to beN (69; 2:8). Is 72 one of the numbers for which we should be looking,
to use the Rule? Well, it's greater thap = 69, so we could hope that it wag + x,

x +2 x,0r x +3 x.Butvalues are

x+ x =69+2:8=71.8;
x t2 x =69+5:6 =74:6;and
x +3 x =69+8:4=774;
none of which is what we need.
Well, it is true that72  71:8, so we could use that fact and accept that we are only
getting an approximate answer — an odd choice, given théasiay of tools which will

give us extremely precise answers, but let's just go witbritef minute.
Let's see, the above Rule tells us that

P(66:2<X < 718)= P( x x <X< x+ x)= :68:
Now since the total area under any density curve is 1,

P(X< 6620rX > 71:8) =1 P(662<X< 718)=1 :68=:32:
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Since the eventX < 66:2" is disjoint from the eventX > 718" (X only takes on one
value at a time, so it cannot be simultaneously less thana@l2yreater than 71.8), we can
use the simple rule for addition of probabilities:

:32=P(X < 6620rX > 71:8)= P(X < 662)+ P(X > 718):

Now, since the density function of the Normal distributiensymmetric around the line
X = x, the two terms on the right in the above equation are equathwheans that
1 1
P(X> 718) = E(P(X < 662)+ P(X > 718)) = 5:32 =:16:
It might help to visualize the symmetry here as the equalitye two shaded areas in the
following graph

Now, using the fact that2 718, we may say that
P(X> 72) P(X> 718)=:16

which, since we know that in fa@ (X > 72) = :1419883859s not a completely terrible
approximation.

ExamMPLE 4.3.31. Let's do one more computation in the context of thights of adult
American males, as in the immediately above Example 4.230now one in which the
68-95-99.7 Rule gives a more precise answer.

So say we are asked this time what proportion of adult Amennan are shorter than
63.4 inches. Why that height, in particular? Well, it's haall archaeologists have deter-
mined King Tut was in life. [No, that's made up. It's just a gboumber for this problem.]

Again, looking through the valuex x, x Z2x,and x 3 x,we notice that

634=69 56= x 2x:

Therefore, to answer what fraction of adult American malkesshorter than 63.4 inches
amounts to asking what is the value®fX < x 2 x).
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What we know abouty 2 x is that the probability oX being between those two
valuesisP( x 2x < X < x +2 x) = :95. As in the previous Example, the
complementary eventtoy 2 x <X < x +2 x,”which will have probability:05,
consists of two piecesX'< x 2 x”and“X > x +2 x,”which have the same area
by symmetry. Therefore

P(X< 634)=P(X< x 2x)
:%[p(x< x  2x)*+P(X> x+2 )]
= %p(x< x 2x0rX> yx+2 yx) since theyre disjoint
=%P((x 2x <X< x+2x)9)

= %[1 P(x 2x<X< x+2 x)] byprob.for complements

1
= —~:05
2

= :025

Just the way nding the particulaX values x x, X Z2x,and x 3 xina
particular situation would tell us the 68-95-99.7 Rule ntigd useful, so also would nding
the probability values68, :95, 99:7, or their complements32, :05, or :003 — or even half
of one of those numbers, using the symmetry.

EXAMPLE 4.3.32. Continuing with the scenario of Example 4.3.30ukehow gure
out what is the height above which there will only be .15% &f plopulation.

Notice that .15%, or the proportion .0015, is not one of thebers in the 68-95-99.7
Rule, nor is it one of their complements — but it is half of ohéhe complements, being half
of .003. Now, .003 is the complementary probability to .98%ich was the probability in
therangex 3 x. Aswe have seen already (twice), the complementary aréatatthe
region betweeny 3 x consists of two thin tails which are of equal area, each cdehe
areas beiné(l :997) = :0015. This all means that the beginning of that upper tail, above
which value lies .15% of the population, is tkevalue x +3 x =68+3 28=77:4.

Therefore .15% of adult American males are taller than 7#ces.
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Exercises

EXERCISE 4.1. A basketball player shoots four free throws, and yodueadtown the
sequence of hits and misses. Write down the sample spadari@irg of this whole thing
as a random experiment.

In another game, a basketball player shoots four free thramg you write down the
number of baskets she makes. Write down the sample spachigodifferent random
experiment.

EXERCISE 4.2. You take a normal, six-sided die, paint over all the sidend then
write the letterA on all six sides. You then roll the die. What is the sample spHchis
experiment? Also, list all the possible events for this expent. [Hint: it may help to look
at Example 4.1.9.]

Now you paint it over again, and writ& on half the sides anB on the other half.
Again, say what is the sample space and list all possibleteven

One more time you paint over the sides, then whten one third of the face® on
one third of the other faces, ai@on the remaining third. Again, give the sample space
and all events.

Make a conjecture about how many events there will be if thepta space has
outcomes in it.

EXERCISE 4.3. Describe a random experiment whose sample space viitiebget of
all points on the (standard, 2-dimensional;) plane.

EXERCISE 4.4. The most common last [family] name in the world seemseté\lang
[or the variant Wong]. Approximately 1.3% of the global p¢gdion has this last name.

The most common rst name in the world seems to be Mohammadrerof several
variants]. Some estimates suggest that perhaps as many@sti28global population has
this rst name.

Can you tell, from the above information, what percentaggefwvorld population has
the name “Mohammad Wang?” If so, why and what would it be? tf mty not, and can
you make any guess about what that percentage would be, gAywa

[Hint: think of all the above percentages as probabilitiediere the experiment is pick-
ing a random person on Earth and asking their name. Carefidigcribe some events for
this experiment, relevant to this problem, and say what theibabilities are. Tell how
combining events will or will not compute the probabilitytlé desired event, correspond-
ing to the desired percentage.]

[Note: don't bet on the numbers given in this problem beirmdocurate — they might
be, but there is a wide range of published values for them blipinformation from dif-
ferent sources, so probably they are only a very crude appraton.]
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EXERCISE 4.5. Suppose that when people have kids, the chance of havog or a
girl is the same. Suppose also that the sexes of succesdigeeahin the same family are
independent. [Neither of these is exactly true in real big, let's pretend for this problem.]

The Wang family has two children. If we think of the sexes adgé children as the
result of a random experiment, what is the sample space? tNateve're interested in
birth order as well, so that should be apparent from the sasymdce.

What are the probabilities of each of the outcomes in youpdaspace? Why?

Now suppose we know that at least one of the Wang children igya ksiven this
information, what is the probability that the Wangs have bogs?

Suppose instead that we know that the Wangs' older child isya What is the proba-
bility, given this different information, that both Wangitdren are boys?

To solve this, clearly de ne events in words and with symbaolsmpute probabilities,
and combine these to get the desired probability. Explagmyeking you do, of course.

EXERCISE4.6. Imagine you live on a street with a stop light at both evfdbe block.
You watch cars driving down the street and notice which or@e® Iho stop at th&*t and/or
2" light (or none). After counting cars and stops for a year, lyave seen what a very large
number — call itN — of cars did. Now imagine you decide to think about the expernit
“pick a car on this street from the last year at random and moéitwhich light or lights it
has to stog

Let A be the eventthe car had to stop at th&™ light” and B be the eventthe car
had to stop at the" light.” What else would you have to count, over your year of data
collection, to estimate the probabilitiesAfand ofB? Pick some numbers for all of these
variables and show what the probabilities would then be.

Make a Venn diagram of this situation. Label each of the faumected regions of this
diagram (the countries, if this were a map) with a number frbrto 4, then provide a key
which gives, for each of these numbered regidmagh a formula in terms oA\, B, unions,
intersections, and/or complements, and thlwma description entirely in words which do
not mentionA or B or set operations at all. Then put a decimal number in eacheof t
regions indicating the probability of the correspondingrav

Wait — for one of the regions, you can't Il in the probabiligset, with the information
you've collected so far. What else would you have had to cowet the data-collection
year to estimate this probability? Make up a number and shbatwhe corresponding
probability would then be, and add that number to your Vemgdim.

Finally, using the probabilities you have chosen, are tletsA andB independent?
Why or why not? Explain in words what this means, in this catte
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EXERCISE4.7. Here is a table of the prizes for tReergyCube Lottery:
Prize Odds of winning
$1,000,00Q0 1in 12,000,000
$50,000 | 1in 1,000,000

$100 1in 10,000
$7 1in 300
$4 1in 25

We want to transform the above into the [probability] distition of a random variabl¥ .

First of all, let's makeX represent tha@et gain a Lottery player would have for the
various outcomes of playing — note that the ticket to plays88. How would you modify
the above numbers to take into account the ticket costs?

Next, notice that the above table gives winnodgs, not probabilities. How will you
compute the probabilities from those odds? Recall thanggsomething has odds of “1 in
n” means that it tends to happen about once out ofins of the experiment. You might
use the wordrequentissomewhere in your answer here.

Finally, something is missing from the above table of outeemWhat prize — actu-
ally the most common one! — is missing from the table, and halwwwu gure out its
probability?

After giving all of the above explanations, now write dowse fiall, formal, probability
distribution for this “net gain irenergyCube Lottery plays” random variableX .

In this problem, some of the numbers are quite small and vafigbear entirely if you
round them. So use a calculator or computer to compute daregyhere and keep as much
accuracy as your device shows for each step of the calcnlatio

EXERCISE4.8. Continuing with the same scenario as in the previousdise4.7, with
theEnergyCube Lottery: What would be your expectation of the average gainpgtay of
this Lottery? Explain fully, of course.

So if you were to play every weekday for a school year (so: agsla week for the 15
weeks of each semester, two semesters in the year), how mudd you expect to win or
lose in total?

Again, use as much accuracy as your computational devigeahasery step of these
calculations.

EXERCISE4.9. Last problem in the situation of the above Exercise #auatheEn-
ergyCube Lottery: Suppose your friend plays the lottery and calls ymtell you that she
won ... but her cell phone runs out of charge in the middle efdhll, and you don't know
how much she won. Given the information that she won, whatesprrobability that she
won more than $1,0007?

Continue to use as much numerical accuracy as you can.
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EXERCISE 4.10. Let's make a modi ed version of Example 4.3.18. You again
throwing darts at a dartboard, but you notice that you arg hdt-handed so your throws
pull to the right much more than they pull to the left. Whatstmeans is that it is not a
very good model of your dart throws just to notice how far they from the center of the
dartboard, it would be better to notice thecoordinate of where the dart hits, measuring
(in cm) with the center of the board atlocationO. This will be your new choice of RV,
which you will still call X .

You throw repeatedly at the board, measMreand nd out that youneverhit more
than10cm to the right of the center, while you are more accurate toefieaind never hit
more thanscm in that direction. You do hit the middleX( = 0) the most often, and you
guess that the probability decreases linearly to thosesaabere you never hit.

Explain why yourX is acontinuousRV, and what its intervgX nin ; Xmax ] Of values is.

Now sketch the graph of the probability density function ¥or [Hint: it will be a
triangle, with one side along the interval of valUgsin ; Xmax ] ON thex-axis, and its maxi-
mum at the center of the dartboardlake sure that you put tick marks and numbers on the
axes, enough so that the coordinates of the corners of Hmgtriar graph can be seen eas-
ily. [Another hint: it is a useful fact that the total area undeetgraph of any probability
density function i4d.]

What is the probability that your next throw will be in the ksdeye, whose radius,
remember, id:5cm and which therefore stretches frontoordinate 1:5to x-coordinate
1.5?

EXERCISE 4.11. Here's our last discussion of dartboards [maybe?p @frthe prob-
lems with the probability density function approaches frexample 4.3.18 and Exer-
cise 4.10 is the assumption that the functions warear (at least in pieces). It would
be much more sensible to assume they were rbeteshaped maybe like the Normal
distribution.

Suppose your friend Mohammad Wang is an excellent dartepldje throws at a board
and you measure thecoordinate of where the dart goes, as in Exercise 4.10 hétle¢nter
corresponding ta = 0. You notice that his darts are rarely — only 5% of the time talto
— more tharbcm from the center of the board.

Fill in the blanks: “MW's dart hits'x-coordinates are an RX which is Normally
distributed with meany = and standard deviatior = . Explain, of course.

How often does MW completely miss the dartboard? Its radid€em.

How often does he hit the bull's-eye? Remember its radidsSesm, meaning that it
stretches fronx coordinate 1:5to x-coordinatel:5.



CHAPTER 5

Bringing Home the Data

In this chapter, we start to get very practical on the mattéracking down good data
in the wild and bringing it home. This is actually a very laaged important subject — there
are entire courses and booksBxperimental DesigrSurvey MethodologyandResearch
Methodsspecialized for a range of particular disciplines (medicpsychology, sociology,
criminology, manufacturing reliabilitygtc) — so in this book we will only give a broad
introduction to some of the basic issues and approaches.

The rst component of this introduction will give several tife important de nitions
for experimental design in the most direct, simplest canteallecting sample data in an
attempt to understand a single number about an entire piogulaAs we have mentioned
before, usually a population is too large or simply inacit#esand so to determine an im-
portant feature of a population of interest, a researchest e the accessible, affordable
data of a sample. If this approach is to work, the sample maishlbbsen carefully, so as to
avoid the dreadelias. The basic structure of such studies, the meaning of biakssame
of the methods to select bias-minimizing samples, are thgestiof the rst section of this
chapter.

It is more complicated to collect data which will give evidenfor causality for a
causal relationship between two variables under studywiudre often interested in such
relationships — which drug is a more effective treatmentsfame iliness, what advertise-
ment will induce more people to buy a particular product, batpublic policy leads to the
strongest economy. In order to investigate causal relghiips, it is necessary not merely to
observe, but to do an actual experiment; for causal quessibout human subjects, the gold
standard is aandomized, placebo-controlled, double-blind experimsametimes called
simply arandomized, controlled trial [RCTwhich we describe in the second section.

There is something in the randomized, controlled expertmdtch makes many peo-
ple nervous: those in the control group are not getting winaeikperimenter likely thinks
is the best treatment. So, even though society as a whole eraytdrom the knowledge
we get through RCTSs, it almost seems as if some test subjectseag mistreated. While
the scienti c research community has come to terms with #gparent injustice, there
are de nitely experiments which could go too far and crossmaportant ethical lines. In
fact, history has shown that a number of experiments haveabygtbeen done which we
now consider to be clearly unethical. It is therefore impotto state clearly some ethical

91
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guidelines which future investigations can follow in ortiebe con dent to avoid mistreat-
ment of test subjects. One particular set of such guidefmesthical experimentation on
human subjects is the topic of the third and last sectionisfdahapter.
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5.1. Studies of a Population Parameter

Suppose we are studying some population, and in particulariable de ned on that
population. We are typically interested in nding out thdléeving kind of characteristic
of our population:

DEFINITION 5.1.1. A [population] parameter is a number which is computed by
knowing the values of a variable for every individual in thegplation.

ExXAMPLE 5.1.2. If X is a quantitative variable on some population, the poputati
mean x of X is a population parameter — to compute this mean, you neettttogether
the values o for all of individuals in the population. Likewise, the populatistandard
deviation x of X is another parameter.

For example, we asserted in Example 4.3.28 that the heifjathutt American men are
N (69; 2:8). Both the69 and2:8 are population parameters here.

ExamMPLE 5.1.3. If, insteadX were a categorical variable on some population, then
the relative frequency (also called tpepulation proportion) of some valuéA of X —the
fraction of the population that has that value — is anothg@ugation parameter. After all,
to compute this fraction, you have to look at every singleviadial in the population, all
N of them, say, and see how many of them, BBy, make theX take the valueA, then
compute the relative frequenty=N.

Sometimes one doesn't have to look at the speci c individaald compute that fraction
na=N to nd a population proportion. For example, in Example 28.we found that
14:1988) of adult American men are taller thérfieet, assuming, as stated above, that adult
American men's heights are distributed liMg69; 2:8) — using, notice, those parametegs
and x of the height distribution, for which the entire populationst have been examined.
What this means is that the relative frequency of the vatas” for the categorical variable
“is this person taller tharb feet?” is :141988 This relative frequency is also a parameter
of the same population of adult American males.

Parameters must be thought of as xed numbers, out thereeirwtirld, which have
a single, specic value. However, they are very hard for aeskers to get their hands
on, since to compute a parameter, the variable values foentiee population must be
measured. So while the parameter is a single, xed valueliysthat value isunknown.
What can (and does change) is a value coming from a sample.

DEFINITION 5.1.4. A [samplg statistic is a number which is computed by knowing
the values of a variable for the individuals from only a saenpl

ExamMPLE 5.1.5. Clearly, if we have a population and quantitativéalde X , then any
time we choose a sample out of that population, we get a samgd@ and sample standard
deviationS,, both of which are statistics.
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Similarly, if we instead have a categorical variaMeon some population, we take a
sample of sizen out of the population and count how many individuals in theglke — say
na — have some valuA for their value ofY, then thena=nis a statistic (which is also
called thesample proportion and frequently denotefl).

Two different researchers will choose different sampled sm will almost certainly
have different values for the statistics they compute, éubery are using the same formula
for their statistic and are looking at the same populatiokeWwise, one researcher taking
repeated samples from the same population will probablgifferent values each time for
the statistics they compute. So we should think of a statistian easy, accessible number,
changing with each sample we take, that is merely an estiofdtes thing we want, the
parameter, which is one, xed number out in the world, butded from out knowledge.

So while getting sample statistics is practical, we neecetodreful that they are good
estimates of the corresponding parameters. Here are soysetavget better estimates of
this kind:

(1) Pick a larger sampleThis seems quite obvious, because the larger is the sample,
the closer it is to being the whole population and so the béteapproximating
statistics will estimate the parameters of interest. Biiaa, things are not really
quite so simple. In many very practical situations, it wolkdcompletely infeasi-
ble to collect sample data on a sample which was anything tharea miniscule
part of the population of interest. For example, a natioealsiorganization might
want to survey the American population, but it would be efjiprohibitive to get
more than a few thousand sample data values, out of a papulaitihundreds of
millions — so, on the order of tenths of a percent.

Fortunately, there is a general theorem which tells us thahe long run, one
particular statistic is a good estimator of one particukmameter:

FACT 5.1.6. The Law of Large Numbers: Let X be a quantitative variable on some
population. Then as the sizes of samples (each made up @fdodls chosen randomly
andindependentlyrom the population) get bigger and bigger, the correspugndample
meansX get closer and closer to the population megn

(2) Pick a better statistic.Ilt makes sense to use the sample mean as a statistic to
estimate the population mean and the sample proportioritoage the population
proportion. But it is less clear where the somewhat odd féanfior the sample
standard deviation came from — remember, it differs frompihyeulation standard
deviation by having am 1 in the denominator instead of an The reason,
whose proof is too technical to be included here, is that dtnenfila we gave for
Sx is a better estimator fory than would have be the version which simply had
the samen in the denominator.
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In a larger sense, “picking a better statistic” is aboutiggthigher quality
estimates from your sample. Certainly using a statistit &itclever formula is
one way to do that. Another is to make sure that your data isehighest quality
possible. For example, if you are surveying people for tbeinions, the way
you ask a question can have enormous consequences in hosumects answer:
“Do you support awoman's right to control her own body and hegsroduction?”
and“Do you want to protect the lives of unborn children@ate two heavy-handed
approaches to asking a question about abortion. Collégtivee impacts of how
a question is asked are callerding effects and are an important topic social
scientists must understand well.

(3) Pick abettersample. Sample quality is, in many ways, the most important and
hardest issue in this kind of statistical study. What we wahtourse, is a sample
for which the statistic(s) we can compute give good appraxioms for the pa-
rameters in which we are interested. There is a name for thésdf sample, and
one technique which is best able to create these good samghelomness

DEFINITION 5.1.7. A sample is said to lvepresentativeof its population if the values
of its sample means and sample proportions for all variatdts/ant to the subject of
the research project are good approximations of the carrebpg population means and
proportions.

It follows almost by de nition that a representative samfgea good one to use in
the process of, as we have described above, using a samiidéicsts an estimate of a
population parameter in which you are interested. The gures, of coursehow to get a
representative sample

The answer is that it is extremely hard to build a procedureli@osing samples which
guarantees representative samples, but there is a methsidg-randomness — which at
least can reduce as much as possible one speci c kind of @robamples might have.

DEFINITION 5.1.8. Any process in a statistical study which tends to pecedresults
which aresystematically differerftom the true values of the population parameters under
investigation is callediased Such a systematic deviation from correct values is called
bias.

The key word in this de nition issystematicallya process which has a lot of variation
might be annoying to use, it might require the researcheolieat a huge amount of data
to average together, for example, in order for the estintesettle down on something near
the true value — but it might nevertheless notiieesed A biased process might have less
variation, might seem to get close to some particular vakrg quickly, with little data,
but would never give the correct answer, because of theragsi®deviation it contained.



96 5. BRINGING HOME THE DATA

The hard part of nding bias is to gure out what might be caugithat systematic
deviation in the results. When presented with a samplindhatetor which we wish to
think about sources of possible bias, we have to get creative

ExAmMPLE 5.1.9. In a democracy, the opinion of citizens about how gagab their
elected of cials are doing seems like an interesting meaestithe health of that democracy.
At the time of this writing, approximately two months aftéxetinauguration of thg5"
president of the United States, the widely respected Gadhlfing organization reports
[Gall7] that 56% of the population approve of the job the president is doind 40%
disapprove. [Presumabib were neutral or had no opinion.]

According to the site from which these numbers are taken,

“Gallup tracks daily the percentage of Americans who apprar dis-
approve of the job Donald Trump is doing as president. Dadlguits
are based on telephone interviews with approximately 158@onal
adults...”

Presumably, Gallup used the sample proportion as an estim@atnputed with the re-
sponses from their sample ©@600adults. So it was a good statistic for the job, and the
sample size is quite respectable, even if not a very larggidraof the entire adult Amer-
ican population, which is presumably the target populatibthis study. Gallup has the
reputation for being a quite neutral and careful organirgtso we can also hope that the
way they worded their questions did not introduce any bias.

A source of bias that does perhaps cause some concern hkat phtase “telephone
interviews.” It is impossible to do telephone interviewsiwpeople who don't have tele-
phones, so there is one part of the population they will missmetely. Presumably, also,
Gallup knew that if they called during normal working daysldrours, they would not get
working people at home or even on cell phones. So perhapsé#iiey also, or only, in the
evenings and on weekends — but this approach would tendnsgstally to miss people
who had to work very long and/or late hours.

So we might worry that a strategy of telephone interviewy arduld be biased against
those who work the longest hours, and those people mightttehdve similar political
views. In the end, that would result in a systematic errohia $ampling method.

Another potential source of bias is that even when a persalis to answer their
phone, it is their choice to do so: there is little reward ikirtg the time to answer an
opinion survey, and it is easy simply not to answer or to hgmgltis likely, then, that
only those who have quite strong feelings, either positivesgative, or some other strong
personal or emotional reason to take the time, will haveipiexcomplete responses to this
telephone survey. This is potentially distorting, even & vannot be sure that the effects
are systematically in one direction or the other.
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[Of course, Gallup pollsters have an enormous amount ofrexquee and have presum-
ably thought the above issues through completely and gurehow to work around it
— but we have no particular reason to be completely con dertheir results other than
our faith in their reputation, without more details aboutatviwvork-arounds they used. In
science, doubt is always appropriate.]

One of the issues we just mentioned about the Gallup pollimpgyesidential approval
ratings has its own name:

DEFINITION 5.1.10. A sample selection method that involves any subatahoice of
whether to participate or not suffers from what is calMetlintary sample bias

Voluntary sample bias is incredibly common, and yet is sustrang source of bias
that it should be taken as a reason to disregard completelgupposed results of any
study that it affects. Volunteers tend to have strong feglithat drive them to participate,
which can have entirely unpredictable but systematic disigpin uence on the data they
provide. Web-based opinion surveys, numbershoimbs-upor -down or of positive or
negative comments on a social media post, percentages plepebo call in to vote for
or against some public statemeatg, etc. — such widely used polling methods produce
nonsensical results which will be instantly rejected byare/with even a modest statistical
knowledge. Don't fall for them!

We did promise above one technique which can robustly corniagt randomness.
Since bias is based orsgstematidistortion of data, any method which completely breaks
all systematic processes in, for example, sample seleatitinavoid bias. The strongest
such sampling method is as follows.

DEFINITION 5.1.11. Asimple random samplg SRS is a sample of siza, say, chosen
from a population by a method which produces all sampleszafrsfrom that population
with equal probability.

It is oddly dif cult to tell if a particular sample is an SRS.i¥&n just a sample, in
fact, there is no way to tell — one must ask to see the proceatiatehad been followed
to make that sample and then check to see if that proceduré&vwwooduce any subset
of the population, of the same size as the sample, with equdiapility. Often, it is
easier to see that a sampling methames notmake SRSs, by nding some subsets of
the population which have the correct size but which the $iagnpnethodwould never
choose meaning that they have probability zero of being choserat Would mean some
subsets of the correct size would have zero probability @hdre would have a positive
probability, meaning that not all subsets of that size wddsle the same probability of
being chosen.
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Note also that in an SRS it is not that evargividual has the same probability of being
chosen, it must be that evegyoup of individuals of the size of the desired sanis the
same probability of being chosen. These are not the sanmg thin

EXAMPLE 5.1.12. Suppose that on Noah's Ark, the animals decide thikyonm an
advisory council consisting of an SRS of 100 animals, to iNyah and his family run a
tight ship. So a chimpanzee (because it has good hands) g small pieces of paper
in a basket, one for each type of animal on the Ark, with theratis name written on
the paper. Then the chimpanzee shakes the basket well akel filc names from the
basket. Both members of the breeding pair of that named tf/paimal are then put on
the advisory council. Is this an SRS from the entire popatatif animals on the Ark?

First of all, each animal name has a chanc&@fN, whereN is the total number of
types of animals on the Ark, of being chosen. Then both theraatl female of that type
of animal are put on the council. In other words, every indlidl animal has the same
probability —50=N — of being on the council. And yet there are certainly coltets of
100animals from the Ark which do not consist B0 breeding pairs: for example, take 50
female birds and 50 female mammals; that collectiob@danimals has no breeding pairs
at all.

Therefore this is a selection method which picks each iddizi for the sample with
equal probability, buhoteach collection ol 00animals with the same probability. So it is
not an SRS.

With a computer, it is fairly quick and easy to generate an: SRS

FACT 5.1.13. Suppose we have a population of §izeut of which we want to pick an
SRS of sizen, wheren < N . Here is one way to do so: assign every individual in the popu-
lation a unique ID number, with saydigits (maybe student IDs, Social Security numbers,
new numbers from to N chosen in any way you like — randomness not needed here, there
is plenty of randomness in the next step). Have a computegrgecompletely random
d-digit number, one after the other. Each time, pick the irtlial from the population with
that ID number as a new member of the sample. If the next ramdonber generated by
the computer is a repeat of one seen before, or if itdsdagit number that doesn't happen
to be any individual's ID number, then simply skip to the neatdom number from the
computer. Keep going until you haweindividuals in your sample.

The sample created in this way will be an SRS.



5.2. STUDIES OF CAUSALITY 99
5.2. Studies of Causality

If we want to draw conclusions abocausality observations are insuf cient. This is
because simply seeirf§ always followA out in the world does not tell us thét causes
B. For example, maybe they are both causedZbwhich we didn't notice had always
happened before thogeandB, andA is simply a bit faster thaB, so it seems always to
proceed, even to caud®, If, on the other hand, we go out in the world andAland then
always sed, we would have more convincing evidence tAatauseS.

Therefore, we distinguish two types of statistical studies

DEFINITION 5.2.1. Anobservational studyis any statistical study in which the re-
searchers merely look at (measure, talkdts) the individuals in which they are inter-
ested. If, instead, the researchers also change someththg environment of their test
subjects before (and possibly after and during) taking tingiasurements, then the study
is anexperiment.

EXAMPLE 5.2.2. A simple survey of, for example, opinions of votersupolitical
candidates, is an observational study. If, as is sometimies,dhe subject is told something
like “let me read you a statement about these candidateshamdatsk you your opinion
again” [this is an example of something callpdsh-polling], then the study has become
an experiment.

Note that to be considered an experiment, it is not necessatyhe study use princi-
ples of good experimental design, such as those descrilbtbisinhapter, merely that the
researcherdo somethingo their subjects.

ExamMPLE 5.2.3. If | slap my brother, notice him yelp with pain, anditriphantly turn
to you and say “See, slapping hurts!” then I've done an expeni, simply becausedid
somethingeven if it is a stupid experiment [tiny non-random samptecamparisonetc.,
etc].

If I watch you slap someone, who cries out with pain, and therake the same tri-
umphant announcement, then I've only done an observatsindy, since the action taken
was not by me, the “researcher.”

When we do an experiment, we typically impose our intentichange on a number
of test subjects. In this case, no matter the subject of igquie steal a word from the
medical community:

DEFINITION 5.2.4. The thing we do to the test subjects in an experimesdlisd the
treatment.

5.2.1. Control Groups. If we are doing an experiment to try to understand something
in the world, we should not simply do the interesting newtireant to all of our subjects
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and see what happens. In a certain sense, if we did that, wiel wimoply be changing the
whole world (at least the world of all of our test subjectsfl #men doing an observational
study, which, as we have said, can provide only weak evidehcausality. To really do
an experiment, we musbmparetwo treatments.

Therefore any real experiment involves at least two groups.

DEFINITION 5.2.5. In an experiment, the collection of test subjectWigiets the new,
interesting treatment is called te&perimental group, while the remaining subjects, who
get some other treatment such as simply the past commorniger,aate collectively called
thecontrol group.

When we have to put test subjects into one of these two gratipsiery important to
use a selection method which has no bias. The only way to leedcduhis is [as discussed
before] to use a random assignment of subjects to the expetaior control group.

5.2.2. Human-Subject Experiments: ThePlacebo Effect Humans are particularly
hard to study, because their awareness of their envirorsneanthave surprising effects on
what they do and even what happens, physically, to theirdsodihis is not because people
fake the results: there can be real changes in patientsebaalien when you give them a
medicine which is not physiologically effective, and rehhoges in their performance on
tests or in athletic events when you merely convince theitntkiey will do betteretc

DEFINITION 5.2.6. A bene cial consequence of some treatment which lshoot di-
rectly [e.g, physiologically] cause an improvement is called #lacebo Effect Such
a “fake” treatment, which looks real but has no actual pHysgjical effect, is called a
placeba

Note that even though the Placebo Effect is based on givingsts a “fake” treatment,
the effect itselfis not fake It is due to a complex mind-body connection which reallysloe
change the concrete, objectively measurable situationeofest subjects.

In the early days of research into the Placebo Effect, tHehat doctors would give
as a placebo would look like other pills, but would be madé¢ gdsugar (glucose), which
(in those quite small quantities) has essentially no phygioal consequences and so is a
sort of neutral dummy pill. We still often call medical pldwes sugar pills even though
now they are often made of some even more neutral matekialthie starch binder which
is used as a matrix containing the active ingredient in rguills — but without any active
ingredient.

Since the Placebo Effect is a real phenomenon with actualsorable consequences,
when making an experimental design and choosing the netrtesd and the treatment for
the control group, it is important to give the control gragmethinglf they get nothing,
they do not have the bene cial consequences of the PlacefeatE§o they will not have
as good measurements as the experimental group, even ipleeraental treatment had
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no actual useful effect. So we have to equalize for both gsdlue bene t provided by the
Placebo Effect, and give them both an treatment which lobksiethe same (compare pills
to pills, injections to injections, operations to operatipthree-hour study sessions in one
format to three-hour sessions in another formeét) to the subjects.

DEFINITION 5.2.7. An experiment in which there is a treatment group andrdrol
group, which control group is given a convincing placebasail to beglacebo-controlled

5.2.3. Blinding. We need one last fundamental tool in experimental desigat, dh
keeping subjects and experimenters ignorant of which stiiegetting which treatment,
experimental or control. If the test subjects are aware tof which group they have been
put, that mind-body connection which causes the PlacebecEfhiay cause a systematic
difference in their outcomes: this would be the very de mitiof bias. So we don't tell
the patients, and make sure that their control treatmeislpgst like the real experimental
one.

It also could be a problem if the experimenter knew who wasrggtvhich treatment.
Perhaps if the experimenter knew a subject was only gettiagptacebo, they would be
more compassionate or, alternatively, more dismissiveeitimer case, the systematically
different atmosphere for that group of subjects would abaia possible cause of bias.

Of course, when we say that the experimenter doesn't knowwtneatment a partic-
ular patient is getting, we mean that they do not know thahattime of the treatment.
Records must be kept somewhere, and at the end of the experithe data is divided
between control and experimental groups to see which wastafé.

DEFINITION 5.2.8. When one party is kept ignorant of the treatment bathginis-
tered in an experiment, we say that the information has béeded. If neither subjects
nor experimenters know who gets which treatment until tree @rthe experiment (when
both must be told, one out of fairness, and one to learn songetiom the data that was
collected), we say that the experiment vaasgible-blind.

5.2.4. Combining it all: RCTs. This, then is the gold standard for experimental de-
sign: to get reliable, unbiased experimental data whichprawide evidence of causality,
the design must be as follows:

DEFINITION 5.2.9. An experiment which is

randomized
placebo-controlled
double-blind

is called, for short, aandomized, controlled trial [RCT] (where the “placebo-" and
“double-blind” are assumed even if not stated).
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5.2.5. Confounded Lurking Variables. A couple of last terms in this subject are quite
poetic but also very important.

DEFINITION 5.2.10. Alurking variable is a variable which the experimenter did not
put into their investigation.

So a lurking variable is exactly the thing experimenters tnfear: something they
didn't think of, which might or might not affect the study thare doing.
Next is a situation which also could cause problems for iegrfrom experiments.

DEFINITION 5.2.11. Two variables areonfoundedwhen we cannot statistically dis-
tinguish their effects on the results of our experiments.

When we are studying something by collecting data and ddiaiisscs, confounded
variables are a big problem, because we do not know whicheof ils the real cause of the
phenomenon we are investigating: they are statisticatlistmguishable.

The combination of the two above terms is the worst thing farsearch project: what
if there is a lurking variable (one you didn't think to invegdte) which is confounded with
the variable you did study? This would be bad, because thencamclusions would apply
equally well (since the variables are statistically idealtin their consequences) to that
thing you didn't think of ... so your results could well be cpletely misunderstanding
cause and effect.

The problem of confounding with lurking variables is pautarly bad with observa-
tional studies. In an experiment, you can intentionallyag®eyour subjects very randomly,
which means that any lurking variables should be randondiriduted with respect to any
lurking variables — but controlled with respect to the vhlég you are studying — so if the
study nds a causal relationship in your study variablesgamnot be confounded with a
lurking variable.

EXAMPLE 5.2.12. Suppose you want to investigate whether fancy neletat shoes
make runners faster. If you just do an observational study,might nd that those ath-
letes with the new shoes do run faster. But a lurking vari&lelee could be how rich the
athletes are, and perhaps if you looked at rich and poortathteey would have the same
relationship to slow and fast times as the newold-shoe wearing athletes. Essentially,
the variablewvhat kind of shoe is the athlete weari(@ategorical with the two valuesew
andold) is being confounded with the lurking variabdew wealthy is the athleteSo the
conclusion about causalifancy new shoes make them run fasteght be false, and in-
stead the real truth might lveealthy athletes, who have lots of support, good coachesl go
nutrition, and time to devote to their sport, run faster.

If, instead, we did an experiment, we would not have this [gnob We would select
athletes at random — so some would be wealthy and some not giantalf of them (the
experimental group) the fancy new shoes and the other halt@ntrol group) the old type.
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If the type of shoe was the real cause of fast running, we weeddthat in our experimental
outcome. If really it is the lurking variable of the athlet@Vvealth which matters, then we
would see neither group would do better than the other, dimeg both have a mixture
of wealthy and poor athletes. If the type of shoe really isdhese of fast running, then
we would see a difference between the two groups, even thitnega were rich and poor
athletes in both groups, since only one group had the fanmshees.

In short, experiments are better at giving evidence foral#tyghan observational stud-
ies in large part because an experiment which nds a caukdiarship between two vari-
ables cannot be confounding the causal variable under stitbya lurking variable.
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5.3. Experimental Ethics

Experiments with human subjects are technically hard toadowe have just seen,
because of things like the Placebo Effect. Even beyond tdéseilties, they are hard
because human subjects just don't do what we tell them, agmd $&@ want to express their
free will and autonomy.

In fact, history has many (far too many) examples of expentsmdone on human sub-
jects which did not respect their humanity and autonomy ~feeexample, the Wikipedia
page orunethical human experimentation[Wik17b].

The ethical principles for human subject research which we below are largely
based on the idea of respecting the humanity and autononhedgst subjects, since the
lack of that respect seems to be the crucial failure of marth@fyenerally acknowledged
unethical experiments in history. Therefore the below@ples should always be taken as
from the point of view of the test subjects, or as if they weesigned to create systems
which protect those subjects. In particular, a utilitareahculus ofthe greatest good for
the greatest numbenight be appealing to some, but modern philosophers of expetal
ethics generally do not allow the researchers to make thasida themselves. |If, for
example, some subjects were willing and chose to expermoe negative consequences
from being in a study, that might be alright, but it is neveb®left up to the researcher.

5.3.1. “Do No Harm”. The Hippocratic Oath, a version of which is thought in popula
culture to be sworn by all modern doctors, is actually notdusrich at all today in its
original form. This is actually not that strange, since itisds quite odd and archaito
modern ears — it begins

I swear by Apollo the physician, and Asclepius, and HygieidBanacea
and all the gods and goddesses as my witnesses that...

It also has the odd requirements that physicians not usefe, lamd will remain celibate,
etc.

One feature, often thought to be part of the Oath, does natlgxappear in the tra-
ditional text but is probably considered the most imporgamaimise: First, do no harm
[sometimes seen in the Latin versigmmum nil nocere]. This principle is often thought
of as constraining doctors and other care-givers, whichhig ¥or example, thémerican
Medical Associatioriorbids doctors from participation in executions, even whigey are
legal in certain jurisdictions in the United States.

It does seem like good general idea, in any case, that thoeehede power and au-
thority over others should, at the very least, not harm thenihe case of human subject
experimentation, this is thought of as meaning that rebeasanust never knowingly harm
their patients, and must in fact let the patients decide wWiet consider harm to be.

11t dates from thé&™" century BCE, and is attributed to Hippocrates of KoS[13.
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5.3.2. Informed Consent. Continuing with the idea of letting subjects decide what
harms they are willing to experience or risk, one of the mogiartant ethical principles
for human subject research is that test subjects must bd &skiaformed consent What
this means is that they must be informed of all of the possiblesequences, positive and
(most importantly) negative, of participation in the stuayd then given the right to decide
if they want to participate. The information part does notehto tell every detail of the
experimental design, but it must give every possible comsece that the researchers can
imagine.

It is important when thinking aboubformed consento make sure that the subjects
really have the ability to exercise fully free will in theiedision to give consent. If, for
example, participation in the experiment is the only way ¢b gpme good (health care,
monetary compensation in a poor neighborhood, a good gredeliass, advancement in
their job,etc) which they really need or want, the situation itself mayrilepthem of their
ability freely to sayno— and thereforges freely.

5.3.3. Con dentiality. The Hippocratic Oath does also require healers to protect th
privacy of their patients. Continuing with the theme of paitng the autonomy of test
subjects, then, it is considered to be entirely the choicsubiect when and how much
information about their participation in the experimenlilwe made public.

The kinds of information protected here run from, of coutke,subjects’ performance
in the experimental activities, all the way to the simple faicparticipation itself. There-
fore, ethical experimenters must make it possible for suhigesign up for and then do all
parts of the experiment without anyone outside the resdaech knowing this fact, should
the subject want this kind of privacy.

As a practical matter, something must be revealed aboutxperienental outcomes
in order for the scienti c community to be able to learn sohieg) from that experiment.
Typically this public information will consist of measuréke sample means and other
data which areaggregatedfrom many test subjects' results. Therefore, even if it were
know what the mean was and that a person participated in tidg,ghe public would not
be able to gure out what that person’s particular result was

If the researchers want to give more precise informatioruaboe particular test sub-
ject's experiences, or about the experiences of a smallginoumber of subjects that indi-
vidual results could bdisaggregatedrom what was published, then the subjects’ identities
must be hidden, aanonymized This is done by removing from scienti ¢ reports gkr-
sonally identi able information [Pll]such as name, social security or other ID number,
address, phone number, email address,

5.3.4. External Oversight [IRB]. One last way to protect test subjects and their au-
tonomy which is required in ethical human subject experitaggon is to give some other,
disinterested, external group as much power and informaisdhe researchers themselves.
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In the US, this is done by requiring all human subject expentation to get approval
from a group of trained and independent observers, calebhghitutional Review Board
[IRB] before the start of the experimenthe IRB is given a complete description of all
details of the experimental design and then chooses whetheot to give its approval.
In cases when the experiment continues for a long periodh# {such as more than one
year), progress reports must be given to the IRB and its peeapl sought.

Note that the way this IRB requirement is enforced in the UByisequiring approval
by a recognized IRB for experimentation by any organizatitich wants ever to receive
US Federal Government monies, in the form of research grgaternment contracts, or
even student support in schools. IRBs tend to be very stsmtigfollowing rules, and if the
ever see a violation at some such organization, that orgaorewill quickly get excluded
from federal funds for a very long time. As a consequenceymilersities, NGOs, and
research institutes in the US, and even many private orgois or companies, are very
careful about proper use of IRBs.
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Exercises

EXERCISE 5.1. In practicewording effectsare often an extremely strong in uence
on the answers people give when surveyed. So... Suppose g@ideing a survey of
American voters opinions of the president. Think of a way skiag a question which
would tend tomaximizethe number of people who said they approved of the job he is
doing. Then think of another way of asking a question whicluldend tominimizethat
number [who say they approve of his job performance].

EXERCISE 5.2. Think of a survey question you could ask in a survey ofgéeeral
population of Americans in response to which many [most®jppewouldlie. State what
would be the issue you would be investigating with this syryeestion, as a clearly de-
ned, formal variableandparameteron the population of all Americans. Also tell exactly
what would be the wording of the question you think would géigd responses.

Now think of a way to do an observational study which wouldrgete accurate values
for this variable and for the parameter of interest. Expiaidetail.

EXERCISE 5.3. Many parents believe that their small children get ahigieractive
when they eat or drink sweets (candies, sugary sceta3, and so do not let their kids
have such things before nap time, for example. A pediatriate&Euphoria State University
Teaching Hospital [ESUTH)] thinks instead that it is the péseexpectations about the
effects of sugar which cause their children to become hypigeg and not the sugar at all.

Describe a randomized, placebo-controlled, double-tdxmeriment which would col-
lect data about this ESUTH pediatrician's hypothesis. Msikes you are clear about both
which part of your experimental procedure addresses eatttosé important components
of good experimental design.

EXERCISE 5.4. Is the experiment you described in the previous exerars ethical
one? What must the ESUTH pediatrician do before, during,atet the experiment to
make sure it is ethical? Make sure you discuss (at least)itbektist of ethical guidelines
from this chapter and how each point applies to this padicekperiment.






Part 3

Inferential Statistics



We are now ready to make (some) inferences about the reatiwaded on data —
this subject is calledhferential statistics. We have seen how to display and interpret 1-
and 2-variable data. We have seen how to design experimeantscularly experiments
whose results might tell us something about cause and effebe real world. We even
have some principles to help us do such experimentationadtyyi should our subjects be
human beings. Our experimental design principles use randss (to avoid bias), and we
have even studied the basics of probability theory, which allow us to draw the best
possible conclusions in the presence of randomness.

What remains to do in this part is to start putting the piecggther. In particular,
we shall be interested in drawing the best possible cormtgsabout some population
parameter of interest, based on data from a sample. Sincaove &lways to seek simple
random samples (again, to avoid bias), our inferences wilhéver be completely sure,
instead they will be built on (a little bit of) probability dory.

The basic tools we describe for this inferential statistiesthecon dence intervabnd
the hypothesis tesfalso calledtest of signi cancg. In the rst chapter of this Part, we
start with the easiest cases of these tools, when they afte@pp inferences about the
population mean of a quantitative RV. Before we do that, weeha discuss th€entral
Limit Theorem [CLT] which is both crucial to those tools and one of the most pawer
and subtle theorems of statistics.



CHAPTER 6

Basic Inferences

The purpose of this chapter is to introduce two basic but pfmvtools of inferential
statistics, theeon dence intervaland thehypothesis teqfalso calledtest of signi cance,
in the simplest case of looking for the population mean of angitative RV.

This simple case of these tool is based, for both of them, osaatiful and amazing
theorem called th€entral Limit Theoremwhich is therefore the subject of the rst section
of the chapter. The following sections then build the idea$farmulae rst for con dence
intervals and then for hypothesis tests.

Throughout this chapter, we assume that we are working wities(large) population
on which there is de ned a quantitative RX. The population meany is, of course, a
xed number, out in the world, unchanging but also probabtkmnown, simply because to
compute it we would have to have access to the valués fafr the entire population.

Strangely, we assume in this chapter that while we do not knpowwe do know the
population standard deviatiory , of X. This is actually quite a silly assumption — how
could we know x if we didn't already know x ? But we make this assumption because
if makes this rst version oton dence intervalsandhypothesis testgarticularly simple.
(Later chapters in this Part will remove this silly assuropt)

Finally, we always assume in this chapter that the samplegsssere simple random
samples, since by now we know that those are the best kind.

111
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6.1. The Central Limit Theorem

Taking the average [mean] of a sample of quantitative daaatisally a very nice pro-
cess: the arithmetic is simple, and the average often hasi¢beproperty of being closer
to the center of the data than the values themselves beinbinethor averaged. This is
because while a random sample may have randomly picked adewecyarly large (or
particularly small) values from the data, it probably algtkpd some other small (or large)
values, so that the mean will be in the middle. It turns out thase general observations
of how nice a sample mean can be explained and formalized@nyaimportant Theorem:

FACT 6.1.1. The Central Limit Theorem [CLT] Suppose we have a large population
on which is de ned a quantitative random varialdewhose population mean is and
whose population standard deviation js. Fix a whole numben 30. As we take
repeated, independent SRSs of sizéhe distribution of the sample meaxsf these SRSs
is approximatelyN ( x; x= n). That s, the distribution oX is approximately Normal
with mean x and standard deviatio = n.

Furthermore, ans gets bigger, the Normal approximation gets better.

Note that the CLT has several nice pieces. First, it tellshas the middle of the his-
togram of sample means, as we get repeated independenesaimphe same as the mean
of the original population the mean of the sample means is the population mé&de
might write thisasy = x.

Second, the CLT tells us precisely how much less variatieretfs in the sample means
because of the process noted above whereby averages aretoltsee middle of some data
than are the data values themselves. The formula#s x= n.

Finally and most amazingly, the CLT actually tells us exaethat is the shape of
the distribution forx — and it turns out to be that complicated formula we gave De ni
tion 4.3.19. This is completely unexpected, but somehowuttieerse knows that formula
for the Normal distribution density function and makes ipear when we construct the
histogram of sample means.

Here is an example of how we use the CLT:

EXAMPLE 6.1.2. We have said elsewhere that adult American maleght®in inches
are distributed likeN (69; 2:8). Supposing this is true, let us gure out what is the proba-
bility that 52 randomly chosen adult American men, lying daw a row with each one's
feet touching the next one's head, stretch the length of thédbeld. [Why 52?7 Well, an
American football team may have up to 53 people on its actigéer, and one of them has
to remain standing to supervise everyone else's formayimglon the eld....]

First of all, notice that a football eld is 100 yards long, &h is 300 feet or 3600
inches. If every single one of our randomly chosen men wastlxhe average height for
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adult men, that would a total 82 69 = 3588inches, so they would not stretch the whole
length. But there is variation of the heights, so maybe it habpen sometimes....
So imagine we have chosen 52 random adult American men. eeasigh of their

Xi 3600 More precisely, we want to know
X
P Xi 3600 :

Nothing in that looks familiar, but remember that the 52 acweén were chosen randomly.
The best way to choose some number, call#t 52, of individuals from a population is to
choose an SRS of size

Let's also assume that we did that here. Now, having an SR&nee from the CLT
that the sample meanis N (69; 2:8= 52) or, doing the arithmetid\ (69; :38829)

But the question we are considering here doesn't mertjorou cry! Well, it almost
does:X is the sample mean given by P

P
X = —Xi = —Xi
n 2
What that means is that the inequality
X
Xi 3600
amounts to exactly the same thing,Fk)Jy dividing both sideshyas the inequality
Xi 3600
52 52
or, in other words,
X 6923077
Since these inequalities all amount to the same thing, theg the same probabilities, so

X
P x; 3600 =P (X 6923077):

But remembek wasN (69;:38829) so we can calculate this probability witlibreOf ce
Calc or Microsoft Excel as

P(X 6923077)=1 P (X< 6923077)
= NORM.DIST(69:23077 69, :388291)
= 172385

where here we rst use the probability rule for complementsurn around the inequality
into the direction thaNORM.DISTcalculates.

Thus the chance that 52 randomly chosen adult men, lyingeélamg column, are as
long as a football eld, is 72.385%.
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6.2. Basic Con dence Intervals

As elsewhere in this chapter, we assume that we are workithgseime (large) popula-
tion on which there is de ned a quantitative R¥/. The population meany is unknown,
and we want to estimate it. world, unchanging but also prigbatiknown, simply because
to compute it we would have to have access to the valus foir the entire population.

We continue also with our strange assumption that while waatdknow x, we do
know the population standard deviatiop, of X .

Our strategy to estimatg is to take an SRS of sizg, compute the sample mearof
X ,andthentoguessthat X. Butthisleaves us wondering how good an approximation
Xisof .

The strategy we take for this is to gure how closg must be tax —orx to , it's
the same thing, and in fact to be precise enough to say whiagiprobability that x is
a certain distance from. That is, if we choose a target probability, calLit we want to
make an interval of real numbers centeredxowith the probability of x being in that
interval beingL .

Actually, that is not really a sensible thing to ask for: pabbity, remember, is the
fraction of times something happens in repeated expersndiit we are not repeatedly
choosing x and seeing if it is in that interval. Just the opposite, irt:fag is xed (al-
though unknown to us), and every time we pick a new SRS -ttt 'sepeated experiment,
choosing new SRSs! —we can compute a new interval and hopétaew interval might
contain x . The probabilityL will correspond to what fraction of those newly computed
intervals which contain the ( xed, but unknowny, .

How to do even this?

Well, the Central Limit Theorem tells us that the distriloutiof X as we take repeated
SRSs — exactly the repeatable experiment we are imaginiing éds approximately Nor-
mal with mean yx and standard deviatiory = n. By the 68-95-99.7 Rule:

(1) 68% of the time we take samples, the resultingill be within P n units on
the number line of x . Equivalently (since the distance from A to B is the same
as the distance from B to A!), 68% of the time we take samplesyill be within

X P n of X. In other words, 68% of the time we take sampleswill happen to
lie in the interval fromX = ntoX+ P n.

(2) Likewise, 95% of the time we take samples, the resuftimgll be within2 x = n
units on the number line ofy . Equivalently (since the distance from A to B is
still the same as the distance from B to A!), 95% of the time aketsamples,x
will be within 2 P n of X. In other words, 95% of the time we take samples,

x Will happen to lie in the interval from 2 x P ntox+2 x= n.

(3) Likewise, 99.7% of the time we take samples, the resylinwill be within

3 x= nunits on the number line ofy . Equivalently (since the distance from A

P
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to B is still the same as the distance from B to Al), 99.7% ofttimee we take sam-
ples, x will be within 3 x :p n of X. In other words, 99.7% of the time we take
samples, x will happen to lie in the interval frort 3 x P ntoxX+3 y P n.

Notice the general shape here is that the interval goes fomz x P ntox+
Z x P n, where this numbez;, has a name:

DEFINITION 6.2.1. Thecritical value z_ with probability L for the Normal distribu-
tion is the number such that the Normal distributdd x ; x) has probability. between
x 2z xand x +z x.
Note the probability. in this de nition is usually called theon dence level

If you think about it, the 68-95-99.7 Rule is exactly telling thatz, = 1 if L = :68,
z, =21if L = :95 andz = 3 if L = :997 It's actually convenient to make a table of
similar values, which can be calculated on a computer froenféihmula for the Normal
distribution.

FACT 6.2.2. Here is a useful table of critical values for a rangpaxfsible con dence
levels:

L| .5 .8 9 95 | .99 | .999
z, |.674|1.282| 1.645| 1.960| 2.576| 3.291

Note that, oddly, the, here forL = :95is not2, but ratherl:96 This is actually more
accurate value to use, which you may choose to use, or you prdinge to usg, = 2
whenL = :95 if you like, out of delity to the 68-95-99.7 Rule.

Now, using these accurate critical values we can de ne arwat which tells us where
we expect the value ofy to lie.

DEFINITION 6.2.3. For a probability valuke, called thecon dence level the interval
of real numbers frolx z x= ntoxX+ z x P n is called thecon dence interval for
x With con dence level L.

The meaning o€on dencehere is quite precise (and a little strange):

FACT 6.2.4. Any particular con dence interval with con dencevid L might or might
not actually contain the sought-after parameter Rather, what it means to have con -
dence levelL is that if we take repeated, independent SRSs and computmtheéence
interval again for each new from the new SRSs, then a fraction of sizeof these new
intervals will contain x .

Note that any particular con dence interval might or miglt contain x not because
x IS moving around, but rather the SRSs are different each sménhex is (potentially)
different, and hence the interval is moving around. Thes xed (but unknown), while
the con dence intervals move.
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Sometimes the piece we add and subtract fronkth@ make a con dence interval is
given a name of its own:

DEFINITION 6.2.5. When we write a con dence interval for the populatingan x
of some quantitative variabk in the formx E toX+ E, whereE = z, x= n, we call
E themargin of error [or, sometimes, theampling error] of the con dence interval.

Note that if a con dence interval is given without a stated c@nce level, particularly
in the popular press, we should assume that the implied Vea®l.95 .

6.2.1. Cautions. The thing that most often goes wrong when using con dencerint
vals is that the sample data used to compute the sample maad then the endpoints
X E of the interval is not from a good SRS. It is hard to get SRSshsois not unex-
pected. But we nevertheless frequently assume that son@esanan SRS, so that we can
use it to make a con dence interval, even of that assumpsaroti really justi ed.

Another thing that can happen to make con dence intervas &ecurate is to choose
too small a sample size. We have seen that our approach to con dence intervalssrelie
upon the CLT, therefore it typically needs samples of sideamst 30.

EXAMPLE 6.2.6. A survey of 463 rst-year students at Euphoria Stateversity [ESU]
found that the [sample] average of how long they reportedystig per week was 15.3
hours. Suppose somehow we know that the population stadéaration of hours of study
per week at ESU is 8.5. Then we can nd a con dence intervahat39% con dence level
for the mean study per week of all rst-year students by calitng the margin of error to
be b 0

E==12 x= n=2:576 85= 463 =101759
and then noting that the con dence interval goes from
X E =15:3 1:01759 = 1428241

to
X+ E =15:3+1:01759 = 1631759

Note that for this calculation to be doing what we want it tq @e must assume that
the 463 rst-year students were an SRS out of the entire @tjoul of rst-year students at
ESU.

Note also that what it means that we have 99% con dence inritesval from 14.28241
to 16.31759 (0f14:28241 16:31759]Jin interval notation) is not, in fact, that we any con-
dence at all in those particular numbers. Rather, we havedsnce in themethod in
the sense that if we imagine independently taking many &8RSs of size 463 and recal-
culating new con dence intervals, then 99% of these futatervals will contain the one,
xed, unknown .
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6.3. Basic Hypothesis Testing

Let's start with a motivating example, described somewhatentasually than the rest
of the work we usually do, but whose logic is exactly that af gtienti ¢ standard for
hypothesis testing.

EXAMPLE 6.3.1. Suppose someone has a coin which they claim is a fair(icelud-
ing, in the informal notion of a fair coin, that successivpsiare independent of each other).
You care about this fairness perhaps because you will usenihen a betting game.

How can you know if the coin really is fair?

Obviously, your best approach is to start ipping the coirda®e what comes up. If
the rst ip shows headgH], you wouldn't draw any particular conclusion. If the sedon
was also arH, again, so what? If the third was stil, you're starting to think there's a run
going. If you got all the way to tehls in a row, you would be very suspicious, and if the
run went to 10Hs, you would demand that some other coin (or person doingigeng)
be used.

Somewhere between two and 186 in a row, you would go from bland acceptance of
fairness to nearly complete conviction that this coin isfaot— why? After all, the person

ipping the coin and asserting its fairness could say, cciiye that it is possible for a fair
coin to come uH any number of times in a row. Sure, you would reply, but it isyve
unlikely: that is, given that the coin is fair, the conditadprobability that those long runs
without Ts would occur is very small.

Which in turn also explains how you would draw the line, beswéwo and 10MHs
in a row, for when you thought the the improbability of thattpaular run of straighHs
was past the level you would be willing to accept. Other olessr might draw the line
elsewhere, in fact, so there would not be an absolutely sumelgsion to the question of
whether the coin was fair or not.

It might seem that in the above example we only get a prolsticilinswer to a yes/no
guestion (is the coin fair or not?) simply because the thirgare asking about is, by
nature, a random process: we cannot predict how any patigplof the coin will come
out, but the long-term behavior is what we are asking aboaitsurprise, then, that the
answer will involve likelihood. But perhaps other sciewtihypotheses will have more
decisive answers, which do not invoke probability.

Unfortunately, this will not be the case, because we have abeve that it is wise to
introduce probability into an experimental situation, rvieit was not there originally, in
order to avoid bias. Modern theories of science (such astgqomamechanics, and also,
although in a different way, epidemiology, thermodynamgemnetics, and many other sci-
ences) also have some amount of randomness built into #rgifeundations, so we should
expect probability to arise in just about every kind of data.
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Let's get a little more formal and careful about what we nedid with hypothesis
testing.

6.3.1. The Formal Steps of Hypothesis Testing.

(1) State what is the population under study.

(2) State what is the variable of interest for this populatféor us in this section, that
will always be a quantitative variabl¥ .

(3) State which is the resulting population parameter @riggt.For us in this section,
that will always be the population mear of X .

(4) State two hypotheses about the value of this parametsz, €alled thenull hy-
pothesisand writtenH,, will be a statement that the parameter of interest has a
particular value, so

Ho: x = o
where  is some specic number. The other is the interesting altiraave
are considering for the value of that parameter, and is thllsctcthealternative
hypothesis writtenH ,. The alternative hypothesis can have one of three forms:

Ha: x < o;
Hao: x> ¢ o0r
Ha: x 6 o;

where g is the same speci ¢c number as k.

(5) Gather data from an SRS and compute the sample statistohws best related
to the parameter of interedtor us in this section, that will always be the sample
meanX

(6) Compute the following conditional probability
!

getting values of the statistic which are as extreme,

=P .
P or more extreme, as the ones you did get 0

This is called thgp-value of the test
(7) If thep-value is suf ciently small — typicallyp < :05o0r evenp < :01—announce

“We rejectHg, with p = mumber here”
Otherwise, announce
“We fail to rejectHq, with p = hnumber herg”

(8) Translate the result just announced into the languagieeobriginal question. As
you do this, you can sdyl' here is strong statistical evidence that .if'the p-value
is very small, while you should merely say something likénere is evidence
that...” if the p-value is small but not particularly so.
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Note that the hypotheseét, andH ,; arestatementsnot numbers. Sdon't write some-
thing likeHo = x = 17; you might use

H0: 143 X :1711

or
Ho: x =17

(we always use the latter in this book).

6.3.2. How Small is Small Enough, fop-values? Remember how thp-value is de-
ned: !
getting values of the statistic which are as extreme,

=P .
or more extreme, as the ones you did get 0

In other words, if the null hypothesis is true, maybe the behrave saw with the sample
data would sometimes happen, but if the probability is vemal§ it starts to seem that,
under the assumptidtg is true, the sample behavior was a crazy uke. If the uke iszy
enough, we might want simply to say that since the samplevi@hactually happened, it
makes us doubt that, is true at all.

For example, ipp = :5, that means that under the assumptinis true, we would see
behavior like that of the sample about every other time we &k SRS and compute the
sample statistic. Not much of a surprise.

If the p = :25, that would still be behavior we would expect to see in abamet out of
every four SRSs, when th is true.

Whenp gets down tal, that is still behavior we expect to see about one time in ten,
whenHy is true. That's rare, but we wouldn't want to bet anything ornjant on it.

Across science, in legal matters, and de nitely for medstaldies, we start to reject
Ho whenp < :05. After all, if p < :05andH is true, then we would expect to see results
as extreme as the ones we saw in fewer than one SRS out of 20.

There is some terminology for these various cut-offs.

DEFINITION 6.3.2. When we are doing a hypothesis test and gevalue which sat-
ises p < ,forsome real number, we say the data agatistically signi cant at level
. Here the value is called thesigni cance level of the test, as in the phrasé/e reject
Ho at signi cance level ;" which we would say ip <

ExamMPLE 6.3.3. If we did a hypothesis test and ggi-galue ofp = :06, we would say
about it that the result was statistically signi cant at the= :1 level, but not statistically
signi cantatthe = :05level. In other words, we would sdWe reject the null hypothesis
atthe = :1level.” but also"We fail to reject the null hypothesis at the= :05level,".
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FACT 6.3.4. The courts in the United States, as well as the mgjofistandard sci-
enti ¢ and medical tests which do a formal hypothesis tesg the signi cance level of
= :05.
In this chapter, when not otherwise speci ed, we will usettvalue of = :05as a
default signi cance level.

EXAMPLE 6.3.5. We have said repeatedly in this book that the heighgserican
males are distributed likd (69; 2:8). Last semester, a statistics student named Mohammad
Wong said he thought that had to be wrong, and decide to dalg sfuhe question. MW
is a bit shorter than 69 inches, so his conjecture was thahdan height must be less, also.
He measured the heights of all of the men in his statisticsscland was surprised to nd
that the average of those 16 men's heights was 68 inchesdhl/s57 inches tall, and he
thought he was typical, at least for his cfjs®oes this support his conjecture or not?

Let's do the formal hypothesis test.

The population that makes sense for this study would be alt &dnerican men today
— MW isn't sure if the claim of American men's heights having@pulation mean of 69
inches waslwayswrong, he is just convinced that it is wrotgday.

The quantitative variable of interest on that populatioth&r height, which we'll call
X.

The parameter of interest is the population mean

The two hypotheses then are

Ho: x =69 and
H,: x < 69;

where the basic idea in the null hypothesis is that the claithis book of men's heights
having mean 69 is true, while the new idea which MW hopes toentlence for, encoded
in alternative hypothesis, is that the true mean of todayem'mheights is less than 69
inches (like him).

MW now has to make two bad assumptions: the rst is that the tLfents in his
class are an SRS drawn from the population of interest; thensk that the population
standard deviation of the heights of individuals in his gapan of interest is the same
as the population standard deviation of the group of all taduolerican males asserted
elsewhere in this book, 2.8. These are de nitblgd assumptions— particularly that
MW's male classmates are an SRS of the population of todalylft American males — but
he has to make them nevertheless in order to get somewhere.

The sample mean heigkt for MW's SRS of sizen = 16 is X = 68.

When an experimenter tends to look for information whichpmargs their prior ideas, it's callecon r-
mation bias— MW may have been experiencing a bit of this bias when he kesig thought he was average
in height for his class.
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MW can now calculate thp-value of this test, using the Central Limit Theorem. Ac-
cording to the CLT, the distribution of is N (69; 2:8= 16). Ther('afore the-value is

MW would get values oK which are as

_ = P(X < 69):
extreme, or more extreme, as the ones he did gé)t ( )

p=P
Which, by what we just observed the CLT tells us, is competéyl
p__
normalcdf( 999968, 69;2:8= 16)
on a calculator, or

NORM.DIST(68, 69, 2.8/SQRT(16), 1)

in a spreadsheet, either of which gives a value around .0.7656

This means that if MW uses the 5% signi cance level, as werpéte, the result is not
statistically signi cant. Only at the much cruder 10% sigance level would MW say
that he rejects the null hypothesis.

In other words, he might conclude his project by saying

“My research collected data about my conjecture which wasistically
insigni cant at the 5% signi cance level but the data, sigrant at the
weaker 10% level, did indicate that the average height of #gae men
is less than the 69 inches we were told itps< :0765§.”

People who talk to MW about his study should have additioaaterns about his assump-
tions of having an SRS and of the value of the population stahdeviation

6.3.3. Calculations for Hypothesis Testing of Population Mans. We put together
the ideas irnk6.3.1 above and the conclusions of the Central Limit Theaix@summarize
what computations are necessary to perform:

FACT 6.3.6. Suppose we are doing a formal hypothesis test withblaX and param-
eter of interest the population meag. Suppose that somehow we know the population
standard deviationy of X . Suppose the null hypothesis is

Ho: x = o

where g is a speci ¢ number. Suppose also that we have an SRS ohsie&ch yielded
the sample meaX . Then exactly one of the following three situations will &pp

(1) If the alternative hypothesis 4, : x < ¢ then thep-value of the test can be
calculated in any of the following ways
(a) the areato the left of under the graph of Bl ( o; x P n) distribution,
(b) normalcdf( 9999X; o, x= n)on a calculator, or
(c) NORM.DIST(X, o, x/SQRT(n), 1) on aspreadsheet.

(2) If the alternative hypothesis 4, : x > ¢ then thep-value of the test can be
calculated in any of the following ways
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(a) the area to the right o€ under the graph of Bl ( ¢; «x P n) distribution,
(b) normalcdf(X; 9999 ,; x= n) on a calculator, or
(c) I-NORM.DIST( X, o, x/SQRT(n), 1) on aspreadsheet.
(3) If the alternative hypothesis 8, : x 6 o then thep-value of the test can be
found by using the approach in exactly one of the followingéhsituations:
(@) If X < o thenpis calculated by any of the following three ways:
(i) two times the area to the left of under the graph of Bl ( o; x= n)
distribution,
(i) 2* normalcdf( 9999X; o, x P n) on a calculator, or
(i) 2* NORM.DIST(X, o x/SQRT(n), 1) on aspreadsheet.
(b) If X > thenpis calculated by any of the following three ways:
(i) two times the area to the right &f under the graph of N ( o; x P n)
distribution,
(i) 2* normalcdf(X; 9999 o; x P n) on a calculator, or
(i) 2* (1-NORM.DIST( X, o, x/SQRT(n), 1)) on a spread-
sheet.
() If X = othenp=1.

Note the reason that there is that multiplication by two & Hiternative hypothesis is
Ha.: x 6 (isthatthere are two directions — the distribution has tvils tain which the
values can be more extreme thén For this reason we have the following terminology:

DEFINITION 6.3.7. If we are doing a hypothesis test and the alternagpethesis is
Ha: x > oorH;: x < o then thisis called @ne-tailed test If, instead, the
alternative hypothesisid, : x 6 (then thisis called &vo-tailed test

EXAMPLE 6.3.8. Let's do one very straightforward example of a hypstt test:

A cosmetics company lIs its best-selling 8-ounce jars afiédhcream by an automatic
dispensing machine. The machine is set to dispense a meah ofi8ces per jar. Uncon-
trollable factors in the process can shift the mean away Bdirand cause either under Il
or over I, both of which are undesirable. In such a case tispensing machine is stopped
and recalibrated. Regardless of the mean amount dispethgestandard deviation of the
amount dispensed always has value .22 ounce. A qualityaarigineer randomly selects
30 jars from the assembly line each day to check the amouled. IOne day, the sample
mean isX = 8:2ounces. Let us see if there is suf cient evidence in this dartgindicate,
at the 1% level of signi cance, that the machine should balibrated.

The population under study is all of the jars of facial creamtlee day of the 8.2 ounce
sample.

The variable of interest is the weigKkt of the jar in ounces.

The population parameter of interest is the population mgaof X .
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The two hypotheses then are

Ho: x =8:1 and

Hy: x 68:1:

The sample mean % = 8:2, and the sample — which we must assume to be an SRS —
is of sizen = 30.

Using the case in Fact 6.3.6 where the alternative hypatheki, : x 6 ( andthe
sub-case wher¥ > , we compute th@-value by

2+ (1-NORM.DIST( 8:2;8:1;:22=SQRT(30) ; 1))

on a spreadsheet, which yields :01278
Sincep is not less thar01, we fail to rejectHq at the = :01level of signi cance.
The quality control engineer should therefore say to compaanagement

“Today's sample, though off weight, was not statisticalyns cant at the
stringent level of signi cance of = :01that we have chosen to use in
these tests, that the jar- lling machine is in need of rebedition today
(p=:0127§”

6.3.4. Cautions. As we have seen before, the requirement that the sample wsiage
in our hypothesis test is a valid SRS is quite important. Bus &lso quite hard to get
such a good sample, so this is often something that can bé jproddem in practice, and
something which we must assume is true with often very Irdhd reason.

It should be apparent from the above Facts and Examples tsttafithe work in doing
a hypothesis test, after careful initial set-up, comes mpuoating thep-value.

Be careful of the phrasstatistically signi cant It does not mean that the effect is
large! There can be a very small effect, themight be very close to, and yet we might
reject the null hypothesis if the population standard desia x were suf ciently small, or
even if the sample size were large enough that P n became very small. Thus, oddly
enough, a statistically signi cant result, one where thaatosion of the hypothesis test
was statistically quite certain, might not bigni cant in the sense of mattering very much.
With enough precision, we can be very sure of small effects.

Note that the meaning of thevalue is explained above in its de nition as a conditional
probability. Sop does notcompute the probability that the null hypothesis is true, or
any such simple thing. In contrast, the Bayesian approaghdioability, which we chose
not to use in the book, in favor of the frequentist approacieschave a kind of hypothesis
test which includes something like the direct probabillatiH, is true. But we did not
follow the Bayesian approach here because in many other wgysore confusing.

In particular, one consequence of the real meaning opthalue as we use it in this
book is that sometimes we will reject a true null hypothésgsjust out of bad luck. In
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fact, if p is just slightly less than05, we would rejectH at the = :05 signi cance
level even though, in slightly less than one case in 20 (nmgphiSRS out of 20 chosen
independently), we would do this rejection even thotghwas true.

We have a name for this situation.

DEFINITION 6.3.9. When we reject a true null hypotheBig this is called aype |
error. Such an error is usually (but not always: it depends upon ti@vpopulation,
variable, parameter, and hypotheses were set tgiy@ positive meaning that something
exciting and new (or scary and dangerous) was found evemgthibis not really present in
the population.

EXAMPLE 6.3.10. Let us look back at the cosmetic company with a janglmachine
from Example 6.3.8. We don't know what the median of the SR deas, but it wouldn't
be surprising if the data were symmetric and therefore theiamewould be the same as
the sample meaX = 8:2. That means that there were at least 15 jars with 8.2 ounces of
cream in them, even though the jars are all labelled “80z& &bmpany is giving way at
least:2 15 = 3 ounces of the very valuable cream — in fact, probably muclkepgince
that was simply the over lling in that one sample.

So our intrepid quality assurance engineer might well psepim management to in-
crease the signi cance level of the testing regime in the factory. It is true that with a
larger , it will be easier for simple randomness to result in typerbes, but unless the
recalibration process takes a very long time (and so resufewer jars being lled that
day), the cost-bene t analysis probably leans towards gdihe machine slightly too often,
rather than waiting until the evidence is extremely strangust be done.
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Exercises

EXERCISE 6.1. You buy seeds of one particular species to plant in yautden, and
the information on the seed packet tells you that, based arsy& experience with that
species, the mean number of days to germination is 22, vatidsrd deviation 2.3 days.

What is the population and variable in that information? Wparameter(s) and/or
statistic(s) are they asserting have particular valuesy¢dndhink they can really know the
actual parameter(s) and/or statistic's(s') value(s)?|&xp

You plant those seeds on a particular day. What is the prbtyathiat the rst plant
closest to your house will germinate within half a day of teparted mean number of days
to germination — that is, it will germinate between 21.5 a@dbafter planting?

You are interested in the whole garden, where you planteds#éds, as well. What
is the probability that the average days to germination bofta plants in your garden is
between 21.5 and 22.5 days? How do you know you can use theaCeimit Theorem to
answer this problem — what must you assume about those 186 seen the seed packet
in order for the CLT to apply?

EXERCISE6.2. You decide to expand your garden and buy a packet oféiffeseeds.
But the printing on the seed packet is smudged so you can aeththstandard deviation
for the germination time of that species of plant is 3.4 ddys,you cannot see what the
mean germination time is.

So you plant 100 of these new seeds and note how long eacmofales to germinate:
the average for those 100 plants is 17 days.

What is a 90% con dence interval for the population mean & ¢fermination times
of plants of this species? Show and explain all of your workhaiVassumption must you
make about those 100 seeds from the packet in order for yotk tewde valid?

What does it mean that the interval you gave Baéb con denc@ Answer by talking
about what would happen if you bought many packets of thasgskof seeds and planted
100 seeds in each of a bunch of gardens around your community.

EXERCISE 6.3. An SRS of size 120 is taken from the student populatichewery
large Euphoria State University [ESU], and their GPAs amapoted. The sample mean
GPA is 2.71. Somehow, we also know that the population standeviation of GPAs at
ESU is .51. Give a con dence interval at the 90% con denceslder the mean GPA of
all students at ESU.

You show the con dence interval you just computed to a fellstndent who is not
taking statistics. They ask, “Does that mean that 90% ofesttedat ESU have a GPA
which is betweem andb?” wherea andbare the lower and upper ends of the interval you
computed. Answer this question, explaining why if the ansagesand both why not and
what is a better way of explaining this 90% con dence intérifahe answer ino.
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EXERCISE6.4. The recommended daily calorie intake for teenageigifl00 calories
per day. A nutritionist at Euphoria State University beéisthe average daily caloric intake
of girls in her state to be lower because of the advertisingivbhses underweight models
targeted at teenagers. Our nutritionist nds that the ayeraf daily calorie intake for a
random sample of size = 36 of teenage girls is 2150.

Carefully set up and perform the hypothesis test for thisasibn and these data. You
may need to know that our nutritionist has been doing studdiegears and has found that
the standard deviation of calorie intake per day in teenatgeig about 200 calories.

Do you have con dence the nutritionist's conclusions? Wthaés she need to be care-
ful of, or to assume, in order to get the best possible reaults

EXERCISE 6.5. The medication most commonly used today for post-apergain
relieve after minor surgery takes an average of 3.5 minatesase patients' pain, with a
standard deviation of 2.1 minutes. A new drug is being testieidh will hopefully bring
relief to patients more quickly. For the test, 50 patientsem@andomly chosen in one
hospital after minor surgeries. They were given the new paatin and how long until
their pain was relieved was timed: the average in this groap 8«1 minutes. Does this
data provide statistically signi cant evidence, at the Signscance level, that the new
drug acts more quickly than the old?

Clearly show and explain all your set-up and work, of course!

EXERCISE 6.6. The average household size in a certain region seveaa$ yago was
3.14 persons, while the standard deviation was .82 persdiciologist wishes to test,
at the 5% level of signi cance, whether the mean househal isi different now. Perform
the test using new information collected by the sociologista random sample of 75
households this past year, the average size was 2.98 persons

EXERCISE 6.7. A medical laboratory claims that the mean turn-aroume for per-
formance of a battery of tests on blood samples is 1.88 bssidays. The manager of
a large medical practice believes that the actual meangsiarA random sample of 45
blood samples had a mean of 2.09 days. Somehow, we know thabtulation standard
deviation of turn-around times is 0.13 day. Carefully seand perform the relevant test at
the 10% level of signi cance. Explain everything, of course
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68-95-99.7 Rule, 83-86, 114, 115 addition rule for disjoint events, 57
Addition Rule for General Events, 63
;» empty set, 56 aggregated experimental results, for
\ , intersection, 56 con dentiality, 105
[, union, 56 alternative hypothesi$j ., 118-123
, subset, 55 American Medical Association, 104
E¢, complement, 56 amorphous, for scatterplots or associations, 35
Ha, alternative hypothesis, 118-123 and, for events, 56
Ho, null hypothesis, 118-121, 123, 124 anecdote, not the singular of data, 52
1:51QR Rule for Qutliers, 26 anonymization of experimental results, 105
IQR, inter-quartile range, 23, 25, 26, 31, 32 Apollo the physician, 104
x » population mean, 18, 93-95, 110-112, Asclepius, 104
114-116, 118, 120-122 “at random”, 65, 74
N, population size, 6 autonomy, value for human test subjects, 104,
N (0; 1), the standard Normal distribution, 81 105
N( x; x), Normally distributed with meanx AVERAGEsample mean in spreadsheets, 41
and standard deviatior , 78, 112, 114, 115 average
n, sample size, 6, 123 see: mean, 18, 112
P (A j B), conditional probability, 67
Q1, rstquartile, 22, 26-28 bar chart, 7
Qgs, third quartile, 22, 2628 relative frequency, 7, 8
r, correlation coef cient, 36 Bayesian, 53, 123
S, , sample standard deviation, 23, 25, 93, 94 bias, 52, 91, 95, 96, 110, 117
S2, sample variance, 23, 25 biased coin, 64
, Summation notation, 17 bins, in a histogram, 12
x » population standard deviation, 24, 25, 93, 94, bivariate data, 33
111,112,114, 116, 120,121,123 bivariate statistics, 2
x 2, population variance, 24, 25 blinded experiment, 101
X, sample mean, 18, 19, 23, 24, 40, 93-95, boxplot, box-and-whisker plot, 27, 32
112-116, 118, 120-124 showing outliers, 28
Xmax , Maximum value in dataset, 22, 26-28 butter y in the Amazon rainforest, 54
Xmin » Minimum value in dataset, 22, 26—-28
B, y values on an approximating line, 40 Calc[LibreOf ce ], 41, 42, 47, 83, 113, 121-123
z, , critical value, 115 calculator, 24, 40, 78, 82, 89, 121, 122
categorical variable, 6
abortion, 95 causality, 91, 102, 103, 110
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causation, 46
center of a histogram, dataset, or distribution, 15
Central Limit Theorem, CLT, 110-114, 121
classes, in a histogram, 12
Clemens, Samuel [Mark Twain], ix
CLT, Central Limit Theorem, 110-114, 121
coin
biased, 64
fair, 64, 69, 70, 117
complementE ¢, 56-58, 60
conditional probabilityP (A j B), 67, 123
con dence interval, 110, 111
con dence interval for x with con dence level
L, 115,116
con dence level, 115, 116
con rmation bias, 120
confounded, 102, 103
continuous random variable, 69, 90
control group, 100, 102
CORRELcorrelation coef cient in spreadsheets,
41
correlation coef cienty, 36
correlation is not causation
but it sure is a hint, 46
countably in nite, 69
critical value,z, , 115

data, not the plural of anecdote, 52

dataset, 7

default signi cance level, 120

de nition, in mathematics, 2

democracy, 96

density function, for a continuous random
variable, 74, 77, 112

dependent variable, 33

deterministic, 34

direction of a linear association, 35

disaggregation of experimental results, 105

discrete random variable, 69

disjoint events, 57, 59, 62, 63

Disraeli, Benjamin, ix

distribution, 15, 70, 73, 112

do no harm, 104

double-blind experiment, 101

Empirical Rule, 83

empty set; , 56

epidemiology, 117
equiprobable, 65

ethics, experimental, 91, 104
even number, de nition, 2
event, 55, 57-63
Excel[Microsoft], 41, 83, 113, 121-123
expectation, 72

expected value, 72
experiment, 99, 102, 103
experimental design, 52, 91
experimental ethics, 52, 91
experimental group, 100, 102
experimental treatment, 99
explanatory variable, 33
extrapolation, 47

failure to rejectHo, 118, 119, 123
fair coin, 64, 69, 70, 117
fair, in general, 65
fake news, ix
false positive, 124
nite probability models, 63
rst quartile, 22
rst, do no harm, 104
ve-number summary, 27
free will, 104
frequency, 7
relative, 7
frequentist approach to probability, 53, 123

Gallup polling organization, 96

Gauss, Carl Friedrich, 78

Gaussian distribution, 78

genetics, 117

“given,” the known event in conditional
probability, 67

Great Recession, 20

Hippocrates of Kos, 104

Hippocratic Oath, 104, 105

histogram, 12, 13, 32
relative frequency, 14

How to Lie with Statistics, ix

Huff, Darrell, ix

Hygieia, 104
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hypothesis, 124

alternativeH,, 118-123

null, Ho, 118-121, 123, 124
hypothesis test, 110, 111, 117, 121-123

imperfect knowledge, 66

income distribution, 20

independent events, 65, 67, 112, 117, 124

independent variable, 33

individual in a statistical study, 5

inferential statistics, 110

informed consent, 105

insensitive to outliers, 20, 23, 25, 26

Insert Trend Line , display LSRL in
spreadsheet scatterplots, 42

Institutional Review Board, IRB, 106

inter-quartile rangd,QR , 23, 25

interpolation, 43

intersection) , 56, 57, 60, 61

IRB, Institutional Review Board, 106

Kernler, Dan, 83

Law of Large Numbers, 94

leaf, in stemplot, 11

least squares regression line, LSRL, 40
left-skewed histogram, dataset, or distribution, 21
LibreOf ce Calc , 41, 42, 47, 83, 113, 121-123
lies, ix

lies, damned, ix

linear association, 35

lower half data, 22

LSRL, least squares regression line, 40
lurking variable, 102, 103

margin of error, 116
mean, 18-21, 25, 31, 112, 122
population, 18, 93-95, 110-112, 114-1186,
118, 120-122
sample, 18, 19, 23, 40, 93-95, 112-116, 118,
120-124
media, 28
median, 18, 20, 21, 23, 25, 27, 31, 124
Microsoft Excel, 41, 83, 113, 121-123
mode, 17, 19, 23, 31
MS Excel, 41, 83, 113, 121-123
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multi-variable statistics, 2
multimodal histogram, dataset, or distribution, 15
mutually exclusive events, 57

negative linear association, 35

news, fake, ix

non-deterministic, 34

NORM.DIST, the cumulative Normal distribution
in spreadsheets, 83, 113, 121-123

Normal distribution with meany and standard
deviation x , 77, 112

normalcdf, the cumulative Normal distribution
on aTl-8x calculator, 82, 121, 122

Normally distributed with meany and standard
deviation x ,N( x; x), 78,112,114, 115

not, for an event, 56

null hypothesisHg, 118-121, 123, 124

objectivity, 52

observational studies, 103

observational study, 99, 102

one-tailed test, 122

one-variable statistics, 2

or, for events, 56

outcome of an experiment, 55

outlier, 20, 25, 26, 28
bivariate, 45

p-value of a hypothesis test, 118, 119, 123

Panacea, 104

parameter, population, 93-95, 110, 122, 124

personally identi able information, PII, 105

photon, 54

pie chart, 9

pig, yellow, 17

PllI, personally identi able information, 105

placebo, 100

Placebo Effect, 100, 104

placebo-controlled experiment, 101

population mean,x , 18, 93-95, 110-112, 114,
118, 120-122

population of a statistical study, 5, 93, 112, 122,
124

population parameter, 93-95, 110, 122, 124

population proportion, 93-95

population sizeN , 6



132 INDEX

population standard deviationy , 24, 25, 93, 94,
111,112,114, 116, 120, 121, 123
population variance x 2, 24, 25
positive linear association, 35
presidential approval ratings, 96
primum nil nocere
see: rst, do no harm, 104
probability density function, for a continuous
random variable, 74, 77, 112
probability model, 57
probability theory, 52, 110
proof, 2
proportion
population, 93-95
sample, 94-96
push-polling, 99

guantitative variable, 6, 11, 17, 93, 94, 110-112,
114,116, 118, 120

guantum mechanics, 54, 117

quartile, 22, 26, 27, 31

QUARTILE.EXC, quartile computation in
spreadsheets, 25

QUARTILE.INC, quartile computation in
spreadsheets, 25

random variable, RV, 69, 112

randomized experiment, 101

randomized, controlled trial, RCT, 91, 101

randomized, placebo-controlled, double-blind
experiment, 52, 91

randomness, 52, 95, 110, 117, 124

range, 22, 25, 31, 32

RCT, randomized, controlled trial, 52, 101

rejection ofHp, 118, 119, 121, 123,124

relative frequency, 7

representative sample, 95

residual, for data values and LSRLs, 39

response variable, 33

right-skewed histogram, dataset, or distribution,
21

rise over runseeslope of a line

RV, random variable, 69, 112

sample, 6, 110, 112, 119, 122-124

sample mearx, 18, 19, 23, 40, 93-95, 112-116,
118, 120-124
sample proportion, 94—96
sample sizen, 6, 123
sample space, 55, 57, 58, 60—-63
sample standard deviatio8y, 23, 25, 93, 94
sample statistic, 93, 95
sample variances?, 23, 25
sampling error, 116
scatterplot, 35
sensitive to outliers, 20-22, 25, 26, 28, 45
shape
histogram, 15
scatterplot, 35
Show Equation , display LSRL equation in
spreadsheets, 42
signi cance level, 119-124
default, 120, 121
simple random sample, SRS, 97, 98, 110-116,
118-121, 123-125
Simpson's Paradox, 48
skewed histogram, dataset, or distribution, 15, 21
left, 21
right, 21
slope of a line, 35, 39
spread of a histogram, dataset, or distribution, 15,
22-26
spreadsheeseel ibreOf ce Calc andMS Excel
SRS, simple random sample, 97, 98, 110-116,
118-121, 123-125
standard deviation, 23-25, 31, 32, 93, 94, 111,
112,114,116, 120-123
standard Normal distributioN (0; 1), 81
standard Normal RV, 81
standardizing a Normal RV, 82, 83
statistic, sample, 93, 95
statistically indistinguishable, 102
statistically signi cant, for data in a hypothesis
test, 119, 121, 123
STDEV.P, population standard deviation in
spreadsheets, 25
STDEV.S, sample standard deviation in
spreadsheets, 25, 41
stem, in stemplot, 11
stem-and-leaf plot, stemplot, 11
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strength of an association, 35

strong association, 35

strong statistical evidence, 118

subset, , 55, 57

sugar pill, 100

summation notation, , 17

survey methodology, 91

symmetric histogram, dataset, or distribution, 15,
124

test of signi cance, 110, 111
thermodynamics, 117

third quartile, 22

treatment, experimental, 99

Tufte, Edward, 46

Twain, Mark [Samuel Clemens], ix
two-tailed test, 122

type | error, 124

unethical human experimentation, 104

uniform distribution o{Xmin ; Xmax 1, 75
unimodal histogram, dataset, or distribution, 15
union,[ , 56, 57, 60

upper half data, 22

utilitarianism, 104

VAR.P, population variance in spreadsheets, 25
VAR.S, sample variance in spreadsheets, 25
variability, seespread of a histogram, dataset, or
distribution
variable, 6, 93, 122, 124
categorical, 6
dependent, 33
explanatory, 33
independent, 33
quantitative, 6, 11, 17, 93, 94, 110-112, 114,
116, 118,120
response, 33
variance, 23-25
Venn diagram, 57-62
voluntary sample bias, 97
voters, 5

"We fail to reject the null hypothesid,.”, 118,
119, 123
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"We reject the null hypothesidy.”, 118, 119,
121,123,124

weak association, 35

wording effects, 95, 107

y-intercept of a line, 39
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