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Preface

Mark Twain's autobiography [TNA10] modestly questions his own reporting of the
numbers of hours per day he sat down to write, and of the numberof words he wrote in that
time, saying

Figures often beguile me, particularly when I have the arranging of them
myself; in which case the remark attributed to Disraeli would often apply
with justice and force:

“ There are three kinds of lies: lies, damned lies, and statistics.”

[emphasis added]
Here Twain gives credit for this pithy tripartite classi�cation of lies to Benjamin Dis-

raeli, who was Prime Minister of the United Kingdom in 1868 (under Queen Victoria),
although modern scholars �nd no evidence that Disraeli was the actual originator of the
phrase. But whoever actually deserves credit for the phrase, it does seem that statistics are
often used to conceal the truth, rather than to reveal it. So much so, for example, that the
wonderful bookHow to Lie with Statistics [Huf93], by Darrell Huff, gives many, many
examples of misused statistics, and yet merely scratches the surface.

We contend, however, that statistics are not a type of lie, but rather, when used carefully,
are analternativeto lying. For this reason, we use “or” in the title of this book, where
Twain/Disraeli used “and,” to underline how we are thinkingof statistics, correctly applied,
as standing in opposition to lies and damned lies.

But why use such a complicated method of telling the truth as statistics, rather than,
say, telling a good story or painting a moving picture? The answer, we believe, is simply
that there are many concrete, speci�c questions that humanshave about the world which are
best answered by carefully collecting some data and using a modest amount of mathematics
and a fair bit of logic to analyze them. The thing about the Scienti�c Method is that it just
seems to work. So why not learn how to use it?

Learning better techniques of critical thinking seems particularly important at this mo-
ment of history when our politics in the United States (and elsewhere) are so divisive, and
different parties cannot agree about the most basic facts. Alot of commentators from all
parts of the political spectrum have speculated about the impact of so-calledfake newson
the outcomes of recent recent elections and other politicaldebates. It is therefore the goal
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x PREFACE

of this book to help you learnHow to Tell the Truth with Statistics and, therefore, how
to tell when others are telling the truth ... or are faking their “news.”



Part 1

Descriptive Statistics



The �rst instinct of the scientist should be to organize carefully a question of interest,
and to collect some data about this question. How to collect good data is a real and im-
portant issue, but one we discuss later. Let us instead assume for the moment that we have
some data, good or bad, and �rst consider what to do with them1. In particular, we want to
describe them, both graphically and with numbers that summarize some of their features.

We will start by making some basic de�nitions of terminology– words likeindividual ,
population, variable, mean, median, etc. – which it will be important for the student
to understand carefully and completely. So let's brie�y discuss what a de�nitionis, in
mathematics.

Mathematical de�nitions should be perfectly precise because they do notdescribe
something which is observed out there in the world, since such descriptive de�nitions might
have fuzzy edges. In biology, for example, whether a virus isconsidered “alive” could be
subject to some debate: viruses have some of the characteristics of life, but not others. This
makes a mathematician nervous.

When we look at math, however, we should always know exactly which objects satisfy
some de�nition and which do not. For example, aneven numberis a whole number which
is two times some other whole number. We can always tell whether some numbern is
even, then, by simply checking if there is some other numberk for which the arithmetic
statementn = 2k is true: if so,n is even, if not,n is not even. If you claim a numbern is
even, you need just state what is the correspondingk; if claim it is not even, you have to
somehow give a convincing, detailed explanation (dare we call it a “proof”) that such ak
simply does not exist.

So it is important to learn mathematical de�nitions carefully, to know what the criteria
are for a de�nition, to know examples that satisfy some de�nition and other examples which
do not.

Note, �nally, that in statistics, since we are using mathematics in the real world, there
will be some terms (likeindividual andpopulation) which will not be exclusively in the
mathematical realm and will therefore have less perfectly mathematical de�nitions. Never-
theless, students should try to be as clear and precise as possible.

The material in this Part is naturally broken into two cases,depending upon whether we
measure a single thing about a collection of individuals or we make several measurements.
The �rst case is calledone-variable statistics, and will be our �rst major topic. The second
case could potentially go as far asmulti-variable statistics, but we will mostly talk about
situations where we maketwo measurements, our second major topic. In this case of
bivariate statistics, we will not only describe each variable separately (both graphically

1The word “data” is really a plural, corresponding to the singular “datum.” We will try to remember to

use plural forms when we talk about “data,” but there will be no penalty for (purely grammatical) failure to
do so.
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and numerically), but we will also describe their relationship, graphically and numerically
as well.





CHAPTER 1

One-Variable Statistics: Basics

1.1. Terminology: Individuals/Population/Variables/Samples

Oddly enough, it is often a lack of clarity aboutwho[or what] you are looking atwhich
makes a lie out of statistics. Here are the terms, then, to keep straight:

DEFINITION 1.1.1. The units which are the objects of a statistical studyare called the
individuals in that study, while the collection of all such individuals is called thepopula-
tion of the study.

Note that while the term “individuals” sounds like it is talking about people, the indi-
viduals in a study could be things, even abstract things likeevents.

EXAMPLE 1.1.2. The individuals in a study about a democratic election might bethe
voters. But if you are going to make an accurate prediction of who will win the election, it is
important to be more precise about what exactly is the population of all of those individuals
[voters] that you intend to study, but itall eligible voters, all registered voters, the people
who actually voted, etc.

EXAMPLE 1.1.3. If you want to study if a coin is “fair” or not, you would�ip it re-
peatedly. The individuals would then be�ips of that coin, and the population might be
something likeall the �ips ever done in the past and all that will every be done in the fu-
ture. These individuals are quite abstract, and in fact it is impossible ever to get your hands
on all of them (the ones in the future, for example).

EXAMPLE 1.1.4. Suppose we're interested in studying whether doing more homework
helps students do better in their studies. So shouldn't the individuals be the students? Well,
which students? How about we look only at college students. Which college students? OK,
how about students at 4-year colleges and universities in the United States, over the last �ve
years – after all, things might be different in other countries and other historical periods.

Wait, a particular student might sometimes do a lot of homework and sometimes do
very little. And what exactly does “do better in their studies” mean? So maybe we should
look at each student in each class they take, then we can look at the homework they did for
that class and the success they had in it.

Therefore, the individuals in this study would beindividual experiences that students
in US 4-year colleges and universities had in the last �ve years, and population of the study

5



6 1. ONE-VARIABLE STATISTICS: BASICS

would essentially be the collection of all the names on all class rosters of courses in the last
�ve years at all US 4-year colleges and universities.

When doing an actual scienti�c study, we are usually not interested so much in the
individuals themselves, but rather in

DEFINITION 1.1.5. A variable in a statistical study is the answer of a question the
researcher is asking about each individual. There are two types:

� A categorical variableis one whose values have a �nite number of possibilities.
� A quantitative variable is one whose values are numbers (so, potentially an in�-

nite number of possibilities).

The variable is something which (as the name says)varies, in the sense that it can have
a different value for each individual in the population (although that is not necessary).

EXAMPLE 1.1.6. In Example 1.1.2, the variable most likely would bewho they voted
for, a categorical variable with only possible values “Mickey Mouse” or “Daffy Duck” (or
whoever the names on the ballot were).

EXAMPLE 1.1.7. In Example 1.1.3, the variable most likely would bewhat face of the
coin was facing up after the �ip, a categorical variable with values “heads” and “tails.”

EXAMPLE 1.1.8. There are several variables we might use in Example 1.1.4. One
might behow many homework problems did the student do in that course. Another could
behow many hours total did the student spend doing homework over that whole semester,
for that course. Both of those would be quantitative variables.

A categorical variable for the same population would bewhat letter grade did the stu-
dent get in the course, which has possible valuesA, A-, B+, . . . ,D-, F.

In many [most?] interesting studies, the population is too large for it to be practical to
go observe the values of some interesting variable. Sometimes it is not just impractical, but
actually impossible – think of the example we gave of all the �ips of the coin, even in the
ones in the future. So instead, we often work with

DEFINITION 1.1.9. Asampleis a subset of a population under study.

Often we use the variableN to indicate the size of a whole population and the variable
n for the size of a sample; as we have said, usuallyn < N .

Later we shall discuss how to pick a good sample, and how much we can learn about
a population from looking at the values of a variable of interest only for the individuals in
a sample. For the rest of this chapter, however, let's just consider what to do with these
sample values.
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1.2. Visual Representation of Data, I: Categorical Variables

Suppose we have a population and variable in which we are interested. We get a sample,
which could be large or small, and look at the values of the ourvariable for the individuals
in that sample. We shall informally refer to this collectionof values as adataset.

In this section, we suppose also that the variable we are looking at is categorical. Then
we can summarize the dataset by telling which categorical values did we see for the indi-
viduals in the sample, and how often we saw those values.

There are two ways we can make pictures of this information:bar chartsandpie charts.

1.2.1. Bar Charts I: Frequency Charts. We can take the values which we saw for
individuals in the sample along thex-axis of a graph, and over each such label make a box
whose height indicates how many individuals had that value –thefrequencyof occurrence
of that value.

This is called abar chart . As with all graphs, you shouldalways label all axes.The
x-axis will be labeled with some description of the variable in question, they-axis label
will always be “frequency” (or some synonym like “count” or “number of times”).

EXAMPLE 1.2.1. In Example 1.1.7, suppose we took a sample of consisting of the next
10 �ips of our coin. Suppose further that 4 of the �ips came up heads – write it as “H” –
and 6 came up tails, T. Then the corresponding bar chart wouldlook like

1.2.2. Bar Charts II: Relative Frequency Charts. There is a variant of the above
kind of bar chart which actually looks nearly the same but changes the labels on they-axis.
That is, instead of making the height of each bar be how many times each categorical value
occurred, we could make it bewhat fraction of the sample had that categorical value– the
relative frequency. This fraction is often displayed as a percentage.
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EXAMPLE 1.2.2. The relative frequency version of the above bar chartin Example 1.2.1
would look like

1.2.3. Bar Charts III: Cautions. Notice that with bar charts (of either frequency or
relative frequency) the variable values along thex-axis can appear in any order whatso-
ever. This means that any conclusion you draw from looking at the bar chart must not
depend upon that order. For example, it would be foolish to say that the graph in the above
Example 1.2.1 “shows and increasing trend,” since it would make just as much sense to put
the bars in the other order and then “show a decreasing trend”– both are meaningless.

For relative frequency bar charts, in particular, note thatthe total of the heights of all
the bars must be1 (or 100%). If it is more, something is weird; if it is less, some data has
been lost.

Finally, it makes sense for both kinds of bar charts for they-axis to run from the logical
minimum to maximum. For frequency charts, this means it should go from 0 to n (the
sample size). For relative frequency charts, it should go from 0 to 1 (or 100%). Skimping
on how much of this appropriatey-axis is used is a common trick to lie with statistics.

EXAMPLE 1.2.3. The coin we looked at in Example 1.2.1 and Example 1.2.2 could
well be a fair coin – it didn't show exactly half heads and halftails, but it was pretty close.
Someone who was trying to claim, deceptively, that the coin was not fair might have shown
only a portion of they axis, as
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This is actually, in a strictly technical sense, a correct graph. But, looking at it, one might
conclude that T seems to occur more than twice as often as H, sothe coin is probably not
fair ... until a careful examination of they-axis shows that even though the bar for T is
more than twice as high as the bar for H, that is an artifact of how much of they-axis is
being shown.

In summary, bar charts actually don't have all that much use in sophisticated statistics,
but are extremely common in the popular press (and on web sites and so on).

1.2.4. Pie Charts.Another way to make a picture with categorical data is to use the
fractions from a relative frequency bar chart, but not for the heights of bars, instead for the
sizes of wedges of a pie.

EXAMPLE 1.2.4. Here's a pie chart with the relative frequency data from Example 1.2.2.



10 1. ONE-VARIABLE STATISTICS: BASICS

Pie charts are widely used, but actually they are almost never a good choice. In fact,
do an Internet search for the phrase “pie charts are bad” and there will be nearly 3000 hits.
Many of the arguments are quite insightful.

When you see a pie chart, it is either an attempt (misguided, though) by someone to
be folksy and friendly, or it is a sign that the author is quiteunsophisticated with data
visualization, or, worst of all, it might be a sign that the author is trying to use mathematical
methods in a deceptive way.

In addition, all of the cautions we mentioned above for bar charts of categorical data
apply, mostly in exactly the same way, for pie charts.
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1.3. Visual Representation of Data, II: Quantitative Variables

Now suppose we have a population andquantitativevariable in which we are interested.
We get a sample, which could be large or small, and look at the values of the our variable
for the individuals in that sample. There are two ways we tendto make pictures of datasets
like this: stem-and-leaf plotsandhistograms.

1.3.1. Stem-and-leaf Plots.One somewhat old-fashioned way to handle a modest
amount of quantitative data produces something between simply a list of all the data val-
ues and a graph. It's not a bad technique to know about in case one has to write down a
dataset by hand, but very tedious – and quite unnecessary, ifone uses modern electronic
tools instead – if the dataset has more than a couple dozen values. The easiest case of this
technique is where the data are all whole numbers in the range0 � 99. In that case, one
can take off the tens place of each number – call it thestem– and put it on the left side of
a vertical bar, and then line up all the ones places – each is aleaf – to the right of that stem.
The whole thing is called astem-and-leaf plotor, sometimes, just astemplot.

It's important not to skip any stems which are in the middle ofthe dataset, even if there
are no corresponding leaves. It is also a good idea to allow repeated leaves, if there are
repeated numbers in the dataset, so that the length of the rowof leaves will give a good
representation of how much data is in that general group of data values.

EXAMPLE 1.3.1. Here is a list of the scores of 30 students on a statistics test:

86 80 25 77 73 76 88 90 69 93
90 83 70 73 73 70 90 83 71 95
40 58 68 69 100 78 87 25 92 74

As we said, using the tens place (and the hundreds place as well, for the data value100) as
the stem and the ones place as the leaf, we get

TABLE 1.3.1.1. Stem-and-leaf plot of students' scores, Key:1j7 = 17

Stem Leaf
10 0
9 0 0 0 2 3 5
8 0 3 3 6 7 8
7 0 0 1 3 3 3 4 6 7 8
6 8 9 9
5 8
4 0
3
2 5 5
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One nice feature stem-and-leaf plots have is thatthey contain all of the data values,
they do not lose anything (unlike our next visualization method, for example).

1.3.2. [Frequency] Histograms.The most important visual representation of quanti-
tative data is ahistogram. Histograms actually look a lot like a stem-and-leaf plot, except
turned on its side and with the row of numbers turned into a vertical bar, like a bar graph.
The height of each of these bars would be how many

Another way of saying that is that we would be making bars whose heights were deter-
mined by how many scores were in each group of ten. Note there is still a question of into
which bar a value right on the edge would count:e.g.,does the data value50 count in the
bar to the left of that number, or the bar to the right? It doesn't actually matter which side,
but it is important to state which choice is being made.

EXAMPLE 1.3.2. Continuing with the score data in Example 1.3.1 and putting all data
valuesx satisfying20 � x < 30 in the �rst bar, valuesx satisfying30 � x < 40 in the
second, valuesx satisfying40 � x < 50in the second,etc.– that is, put data values on the
edges in the bar to the right – we get the �gure

Actually, there is no reason that the bars always have to be ten units wide: it is important
that they are all the same size and that how they handle the edge cases (whether the left or
right bar gets a data value on edge), but they could be any size. We call the successive
ranges of thex coordinates which get put together for each bar the calledbins or classes,
and it is up to the statistician to chose whichever bins – where they start and how wide they
are – shows the data best.

Typically, the smaller the bin size, the more variation (precision) can be seen in the bars
... but sometimes there is so much variation that the result seems to have a lot of random
jumps up and down, like static on the radio. On the other hand,using a large bin size makes
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the picture smoother ... but sometimes, it is so smooth that very little information is left.
Some of this is shown in the following

EXAMPLE 1.3.3. Continuing with the score data in Example 1.3.1 and now using the
bins withx satisfying10 � x < 12, then12 � x < 14, etc., we get the histogram with bins
of width 2:

If we use the bins withx satisfying10 � x < 15, then15 � x < 20, etc., we get the
histogram with bins of width 5:

If we use the bins withx satisfying20 � x < 40, then40 � x < 60, etc., we get the
histogram with bins of width 20:
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Finally, if we use the bins withx satisfying0 � x < 50, then50 � x < 100, and then
100� x < 150, we get the histogram with bins of width 50:

1.3.3. [Relative Frequency] Histograms.Just as we could have bar charts with abso-
lute (x1.2.1) or relative (x1.2.2) frequencies, we can do the same for histograms. Above, in
x1.3.2, we made absolute frequency histograms. If, instead,we divide each of the counts
used to determine the heights of the bars by the total sample size, we will get fractions
or percents –relativefrequencies. We should then change the label on they-axis and the
tick-marks numbers on they-axis, but otherwise the graph will look exactly the same (asit
did with relative frequency bar charts compared with absolute frequency bar chars).

EXAMPLE 1.3.4. Let's make the relative frequency histogram corresponding to the
absolute frequency histogram in Example 1.3.2, based on thedata from Example 1.3.1 –
all we have to do is change the numbers used to make heights of the bars in the graph by
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dividing them by the sample size, 30, and then also change they-axis label and tick mark
numbers.

1.3.4. How to Talk About Histograms. Histograms of course tell us what the data
values are – the location along thex value of a bar is the value of the variable – and how
many of them have each particular value – the height of the bartells how many data values
are in that bin. This is also given a technical name

DEFINITION 1.3.5. Given a variable de�ned on a population, or at least ona sample,
thedistribution of that variable is a list of all the values the variable actually takes on and
how many times it takes on these values.

The reason we like the visual version of a distribution, its histogram, is that our visual
intuition can then help us answer general, qualitative questions about what those data must
be telling us. The �rst questions we usually want to answer quickly about the data are

� What is theshapeof the histogram?
� Where is itscenter?
� How muchvariability [also calledspread] does it show?

When we talk about the general shape of a histogram, we often use the terms

DEFINITION 1.3.6. A histogram issymmetric if the left half is (approximately) the
mirror image of the right half.

We say a histogram isskewed leftif the tail on the left side is longer than on the right.
In other words, left skew is when the left half of the histogram – half in the sense that the
total of the bars in this left part is half of the size of the dataset – extends farther to the left
than the right does to the right. Conversely, the histogram is skewed right if the right half
extends farther to the right than the left does to the left.
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If the shape of the histogram has one signi�cant peak, then wesay it isunimodal, while
if it has several such, we say it ismultimodal .

It is often easy to point to where the center of a distributionlooks likeit lies, but it is
hard to be precise. It is particularly dif�cult if the histogram is “noisy,” maybe multimodal.
Similarly, looking at a histogram, it is often easy to say it is “quite spread out” or “very
concentrated in the center,” but it is then hard to go beyond this general sense.

Precision in our discussion of the center and spread of a dataset will only be possible in
the next section, when we work with numerical measures of these features.
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1.4. Numerical Descriptions of Data, I: Measures of the Center

Oddly enough, there are several measures of central tendency, as ways to de�ne the
middle of a dataset are called. There is different work to be done to calculate each of them,
and they have different uses, strengths, and weaknesses.

For this whole section we will assume we have collectedn numerical values, the values
of our quantitative variable for the sample we were able to study. When we write formulæ
with these values, we can't give them variable names that look like a; b; c; : : :, because we
don't know where to stop (and what would we do ifn were more than 26?). Instead, we'll
use the variablesx1; x2; : : : ; xn to represent the data values.

One more very convenient bit of notation, once we have started writing an unknown
number (n) of numbersx1; x2; : : : ; xn , is a way of writing their sum:

DEFINITION 1.4.1. If we haven numbers which we writex1; : : : ; xn , then we use the
shorthandsummation notation

P
x i to represent the sum

P
x i = x1 + � � � + xn . 1

EXAMPLE 1.4.2. If our dataset weref 1; 2; 17; � 3:1415; 3=4g, thenn would be 5 and
the variablesx1; : : : ; x5 would be de�ned with valuesx1 = 1, x2 = 2, x3 = 17, x4 =
� 3:1415, andx5 = 3=4.

In addition2, we would have
P

x i = x1+ x2+ x3+ x4+ x5 = 1+2+17 � 3:1415+3=4 =
17:6085.

1.4.1. Mode. Let's �rst discuss probably the simplest measure of centraltendency, and
in fact one which was foreshadowed by terms like “unimodal.”

DEFINITION 1.4.3. Amodeof a datasetx1; : : : ; xn of n numbers is one of the values
x i which occurs at least as often in the dataset as any other value.

It would be nice to say this in a simpler way, something like “the mode is the value
which occurs the most often in the dataset,” but there may notbe a single such number.

EXAMPLE 1.4.4. Continuing with the data from Example 1.3.1, it is easy to see, look-
ing at the stem-and-leaf plot, that both 73 and 90 are modes.

Note that in some of the histograms we made using these data and different bin widths,
the bins containing 73 and 90 were of the same height, while inothers they were of different
heights. This is an example of how it can be quite hard to see ona histogram where the
mode is... or where the modes are.

1Sometimes you will see this written instead
P n

i =1 x i . Think of the “
P n

i =1 ” as a little computer program
which with i = 1 , increases it one step at a time until it gets all the way toi = n, and adds up whatever is to

the right. So, for example,
P 3

i =1 2i would be(2 � 1) + (2 � 2) + (2 � 3), and so has the value12.
2no pun intended
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1.4.2. Mean. The next measure of central tendency, and certainly the one heard most
often in the press, is simply the average. However, in statistics, this is given a different
name.

DEFINITION 1.4.5. Themean of a datasetx1; : : : ; xn of n numbers is given by the
formula(

P
x i ) =n.

If the data come from a sample, we use the notationx for thesample mean.
If f x1; : : : ; xng is all of the data from an entire population, we use the notation� X [this

is the Greek letter “mu,” pronounced “mew,” to rhyme with “new.”] for the population
mean.

EXAMPLE 1.4.6. Since we've already computed the sum of the data in Example 1.4.2
to be17:6085and there were5 values in the dataset, the mean isx = 17:6085=5 = 3:5217.

EXAMPLE 1.4.7. Again using the data from Example 1.3.1, we can calculate the mean
x = (

P
x i ) =n = 2246=30 = 74:8667.

Notice that the mean in the two examples above was not one of the data values. This
is true quite often. What that means is that the phrase “the averagewhatever,” as in “the
average American family hasX ” or “the average student doesY,” is not talking about any
particular family, and we should not expect any particular family or student to have or do
that thing. Someone with a statistical education should mentally edit every phrase like that
they hear to be instead something like “the mean of the variable X on the population of all
American families is ...,” or “the mean of the variableY on the population of all students is
...,” or whatever.

1.4.3. Median. Our third measure of central tendency is not the result of arithmetic,
but instead of putting the data values in increasing order.

DEFINITION 1.4.8. Imagine that we have put the values of a datasetf x1; : : : ; xng of n
numbers in increasing (or at least non-decreasing) order, so thatx1 � x2 � � � � � xn . Then
if n is odd, themedian of the dataset is the middle value,x(n+1) =2, while if n is even, the
median is the mean of the two middle numbers,

xn= 2+ x ( n= 2)+1

2 .

EXAMPLE 1.4.9. Working with the data in Example 1.4.2, we must �rst put them in
order, asf� 3:1415; 3=4; 1; 2; 17g, so the median of this dataset is the middle value,1.

EXAMPLE 1.4.10. Now let us �nd the median of the data from Example 1.3.1. For-
tunately, in that example, we made a stem-and-leaf plot and even put the leaves in order,
so that starting at the bottom and going along the rows of leaves and then up to the next
row, will give us all the values in order! Since there are 30 values, we count up to the15th

and16th values, being 76 and 77, and from this we �nd that the median ofthe dataset is
76+77

2 = 76:5.
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1.4.4. Strengths and Weaknesses of These Measures of Central Tendency. The
weakest of the three measures above is the mode. Yes, it is nice to know which value
happened most often in a dataset (or which values all happened equally often and more of-
ten then all other values). But this often does not necessarily tell us much about the over-all
structure of the data.

EXAMPLE 1.4.11. Suppose we had the data

86 80 25 77 73 76 100 90 67 93
94 83 72 75 79 70 91 82 71 95
40 58 68 69 100 78 87 25 92 74

with corresponding stem-and-leaf plot

Stem Leaf
10 0
9 0 1 2 3 4 5
8 0 2 3 6 7 8
7 0 1 2 3 4 5 6 7 8 9
6 7 8 9
5 8
4 0
3
2 5 5

This would have a histogram with bins of width 10 that looks exactly like the one in Ex-
ample 1.3.2 – so the center of the histogram would seem, visually, still to be around the bar
over the 80s – but now there is a unique mode of 25.

What this example shows is that a small change in some of the data values, small enough
not to change the histogram at all, can change the mode(s) drastically. It also shows that
the location of the mode says very little about the data in general or its shape, the mode is
based entirely on a possibly accidental coincidence of somevalues in the dataset, no matter
if those values are in the “center” of the histogram or not.

The mean has a similar problem: a small change in the data, in the sense of adding only
one new data value, but one which is very far away from the others, can change the mean
quite a bit. Here is an example.

EXAMPLE 1.4.12. Suppose we take the data from Example 1.3.1 but change only one
value – such as by changing the 100 to a 1000, perhaps by a simple typo of the data entry.
Then if we calculate the mean, we getx = (

P
x i ) =n = 3146=30 = 104:8667, which is

quite different from the mean of original dataset.
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A data value which seems to be quite different from all (or thegreat majority of) the rest
is called anoutlier3 What we have just seen is thatthe mean is very sensitive to outliers.
This is a serious defect, although otherwise it is easy to compute, to work with, and to
prove theorems about.

Finally, the median is somewhat tedious to compute, becausethe �rst step is to put
all the data values in order, which can be very time-consuming. But, once that is done,
throwing in an outlier tends to move the median only a little bit. Here is an example.

EXAMPLE 1.4.13. If we do as in Example 1.4.12 and change the data valueof 100 in
the dataset of Example 1.3.1 to 1000, but leave all of the other data values unchanged, it
does not change the median at all since the 1000 is the new largest value, and that does not
change the two middle values at all.

If instead we take the data of Example 1.3.1 and simply add another value, 1000, with-
out taking away the 100, that does change the media: there arenow an odd number of data
values, so the median is the middle one after they are put in order, which is 78. So the
median has changed by only half a point, from 77.5 to 78. And his would even be true if
the value we were adding to the dataset were 1000000 and not just 1000!

In other words,the median is very insensitive to outliers. Since, in practice, it is very
easy for datasets to have a few random, bad values (typos, mechanical errors,etc.), which
are often outliers, it is usually smarter to use the median than the mean.

As one �nal point, note that as we mentioned inx1.4.2, the word “average,” the unso-
phisticated version of “mean,” is often incorrectly used asa modi�er of the individuals in
some population being studied (as in “the average American ...”), rather than as a modi�er
of the variable in the study (“the average income...”), indicating a fundamental misunder-
standing of what the meanmeans. If you look a little harder at this misunderstanding,
though, perhaps it is based on the idea that we are looking forthe center, the “typical”
value of the variable.

The mode might seem like a good way – it's the most frequently occurring value. But
we have seen how that is somewhat �awed.

The mean might also seem like a good way – it's the “average,” literally. But we've
also seen problems with the mean.

In fact, the median is probably closest to the intuitive ideaof “the center of the data.”
It is, after all, a value with the property that both above andbelow that value lie half of the
data values.

One last example to underline this idea:

EXAMPLE 1.4.14. The period of economic dif�culty for world markets in the late 2000s
and early 2010s is sometimes called theGreat Recession. Suppose a politician says that

3This is a very informal de�nition of an outlier. Below we willhave an extremely precise one.
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we have come out of that time of troubles, and gives as proof the fact that the average
family income has increased from the low value it had during the Great Recession back to
the values it had before then, and perhaps is even higher thanit was in 2005.

It is possible that in fact people are better off, as the increase in this average – mean –
seems to imply. But it is also possible that while the mean income has gone up, themedian
income is still low. This would happen if the histogram of incomes recently still has most
of the tall bars down where the variable (family income) is low, but has a few, very high
outliers. In short, if the super-rich have gotten even super-richer, that will make the mean
(average) go up, even if most of the population has experienced stagnant or decreasing
wages – but the median will tell what is happening to most of the population.

So when a politician uses the evidence of the average (mean) as suggested here, it is
possible they are trying to hide from the pubic the reality ofwhat is happening to the rich
and the not-so-rich. It is also possible that this politician is simply poorly educated in
statistics and doesn't realize what is going on. You be the judge ... but pay attention so you
know what to ask about.

The last thing we need to say about the strengths and weaknesses of our different mea-
sures of central tendency is a way to use the weaknesses of themean and median to our
advantage. That is, since the mean is sensitive to outliers,and pulled in the direction of
those outliers, while the median is not, we can use the difference between the two to tell us
which way a histogram is skewed.

FACT 1.4.15. If the mean of a dataset is larger than the median, then histograms of that
dataset will be right-skewed. Similarly, if the mean is lessthan the median, histograms will
be left-skewed.
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1.5. Numerical Descriptions of Data, II: Measures of Spread

1.5.1. Range.The simplest – and least useful – measure of the spread of somedata is
literally how much space on thex-axis the histogram takes up. To de�ne this, �rst a bit of
convenient notation:

DEFINITION 1.5.1. Supposex1; : : : ; xn is some quantitative dataset. We shall write
xmin for the smallest andxmax for the largest values in the dataset.

With this, we can de�ne our �rst measure of spread

DEFINITION 1.5.2. Supposex1; : : : ; xn is some quantitative dataset. Therangeof this
data is the numberxmax � xmin .

EXAMPLE 1.5.3. Using again the statistics test scores data from Example 1.3.1, we
can read off from the stem-and-leaf plot thatxmin = 25 andxmax = 100, so the range is
75(= 100� 25).

EXAMPLE 1.5.4. Working now with the made-up data in Example 1.4.2, which was put
into increasing order in Example 1.4.9, we can see thatxmin = � 3:1415andxmax = 17,
so the range is20:1415(= 17� (� 3:1415)).

The thing to notice here is that since the idea of outliers is that they are outside of the
normal behavior of the dataset, if there are any outliers they will de�nitely be what value
gets calledxmin or xmax (or both). Sothe range is supremely sensitive to outliers: if
there are any outliers, the range will be determined exactlyby them, and not by what the
typical data is doing.

1.5.2. Quartiles and theIQR . Let's try to �nd a substitute for the range which is not
so sensitive to outliers. We want to see how far apart not the maximum and minimum of
the whole dataset are, but instead how far apart are the typical larger values in the dataset
and the typical smaller values. How can we measure these typical larger and smaller? One
way is to de�ne these in terms of the typical – central – value of the upper half of the data
and the typical value of the lower half of the data. Here is thede�nition we shall use for
that concept:

DEFINITION 1.5.5. Imagine that we have put the values of a datasetf x1; : : : ; xng of
n numbers in increasing (or at least non-decreasing) order, so thatx1 � x2 � � � � � xn .
If n is odd, call thelower half data all the valuesf x1; : : : ; x(n� 1)=2g and theupper half
data all the valuesf x(n+3) =2; : : : ; xng; if n is even, thelower half data will be the values
f x1; : : : ; xn=2g and theupper half data all the valuesf x(n=2)+1 ; : : : ; xng.

Then the�rst quartile , writtenQ1, is the median of the lower half data, and thethird
quartile , writtenQ3, is the median of the upper half data.
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Note that the �rst quartile is halfway through the lower halfof the data. In other words,
it is a value such that one quarter of the data is smaller. Similarly, the third quartile is
halfway through the upper half of the data, so it is a value such that three quarters of the
data is small. Hence the names “�rst” and “third quartiles.”

We can build a outlier-insensitive measure of spread out of the quartiles.

DEFINITION 1.5.6. Given a quantitative dataset, itsinter-quartile range or IQR is
de�ned byIQR = Q3 � Q1.

EXAMPLE 1.5.7. Yet again working with the statistics test scores data from Exam-
ple 1.3.1, we can count off the lower and upper half datasets from the stem-and-leaf plot,
being respectively

Lower = f 25; 25; 40; 58; 68; 69; 69; 70; 70; 71; 73; 73; 73; 74; 76g

and
Upper = f 77; 78; 80; 83; 83; 86; 87; 88; 90; 90; 90; 92; 93; 95; 100g :

It follows that, for these data,Q1 = 70 andQ3 = 88, soIQR = 18(= 88 � 70).

EXAMPLE 1.5.8. Working again with the made-up data in Example 1.4.2,which was
put into increasing order in Example 1.4.9, we can see that the lower half data isf� 3:1415; :75g,
the upper half isf 2; 17g, Q1 = � 1:19575(= � 3:1415+ :75

2 ), Q3 = 9:5(= 2+17
2 ), andIQR =

10:69575(= 9:5 � (� 1:19575)).

1.5.3. Variance and Standard Deviation.We've seen a crude measure of spread, like
the crude measure “mode” of central tendency. We've also seen a better measure of spread,
the IQR , which is insensitive to outliers like the median (and builtout of medians). It
seems that, to �ll out the parallel triple of measures, thereshould be a measure of spread
which is similar to the mean. Let's try to build one.

Suppose the data is sample data. Then how far a particular data valuex i is from the
sample meanx is justx i � x. So the mean displacement from the mean, the mean ofx i � x,
should be a good measure of variability, shouldn't it?

Unfortunately, it turns out that the mean ofx i � x is always 0. This is because when
x i > x, x i � x is positive, while whenx i < x, x i � x is negative, and it turns out that the
positives always exactly cancel the negatives (see if you can prove this algebraically, it's
not hard).

We therefore need to make the numbersx i � x positive before taking their mean. One
way to do this is to square them all. Then we take something which is almost the mean of
these squared numbers to get another measure of spread or variability:

DEFINITION 1.5.9. Given sample datax1; : : : ; xn from a sample of sizen, thesample
variance is de�ned as

S2
x =

P
(x i � x)2

n � 1
:
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Out of this, we then de�ne thesample standard deviation

Sx =
p

S2
x =

s P
(x i � x)2

n � 1
:

Why do we take the square root in that sample standard deviation? The answer is that
the measure we build should have the property that if all the numbers are made twice as big,
then the measure of spread should also be twice as big. Or, forexample, if we �rst started
working with data measured in feet and then at some point decided to work in inches, the
numbers would all be 12 times as big, and it would make sense ifthe measure of spread
were also 12 times as big.

The variance does not have this property: if the data are all doubled, the variance in-
creases by a factor of 4. Or if the data are all multiplied by 12, the variance is multiplied
by a factor of 144.

If we take the square root of the variance, though, we get backto the nice property of
doubling data doubles the measure of spread,etc. For this reason, while we have de�ned
the variance on its own and some calculators, computers, andon-line tools will tell the
variance whenever you ask them to computer 1-variable statistics, we will in this class only
consider the variance a stepping stone on the way to the real measure of spread of data, the
standard deviation.

One last thing we should de�ne in this section. For technicalreasons that we shall not
go into now, the de�nition of standard deviation is slightlydifferent if we are working with
population data and not sample data:

DEFINITION 1.5.10. Given datax1; : : : ; xn from an entire population of sizen, the
population variance is de�ned as

� X
2 =

P
(x i � � X )2

n
:

Out of this, we then de�ne thepopulation standard deviation

� X =
p

� X
2 =

s
P

(x i � � X )2

n
:

[This letter � is the lower-case Greek letter sigma, whose upper case� you've seen
elsewhere.]

Now for some examples. Notice that to calculate these values, we shall always use an
electronic tool like a calculator or a spreadsheet that has abuilt-in variance and standard
deviation program – experience shows that it is nearly impossible to get all the calculations
entered correctly into a non-statistical calculator, so weshall not even try.
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EXAMPLE 1.5.11. For the statistics test scores data from Example 1.3.1, entering them
into a spreadsheet and usingVAR.S andSTDEV.S for the sample variance and standard
deviation andVAR.P andSTDEV.P for population variance and population standard de-
viation, we get

S2
x = 331:98

Sx = 18:22

� X
2 = 330:92

� X = 17:91

EXAMPLE 1.5.12. Similarly, for the data in Example 1.4.2, we �nd in the same way
that

S2
x = 60:60

Sx = 7:78

� X
2 = 48:48

� X = 6:96

1.5.4. Strengths and Weaknesses of These Measures of Spread. We have already
said thatthe range is extremely sensitive to outliers.

The IQR , however, is built up out of medians, used in different ways,so the IQR is
insensitive to outliers.

The variance, both sample and population, is built using a process quite like a mean,
and in fact also has the mean itself in the de�ning formula. Since the standard deviation
in both cases is simply the square root of the variance, it follows thatthe sample and
population variances and standard deviations are all sensitive to outliers.

This differing sensitivity and insensitivity to outliers is the main difference between the
different measures of spread that we have discussed in this section.

One other weakness, in a certain sense, of theIQR is that there are several differ-
ent de�nitions in use of the quartiles, based upon whether the median value is included
or not when dividing up the data. These are called, for example, QUARTILE.INC and
QUARTILE.EXCon some spreadsheets. It can then be confusing which one to use.

1.5.5. A Formal De�nition of Outliers – the 1:5IQR Rule. So far, we have said that
outliers are simply data that areatypical. We need a precise de�nition that can be carefully
checked. What we will use is a formula (well, actually two formulæ) that describe that idea
of an outlier beingfar away from the rest of data.

Actually, since outliers should be far away either in being signi�cantly bigger than the
rest of the data or in being signi�cantly smaller, we should take a value on the upper side of
the rest of the data, and another on the lower side, as the starting points for thisfar away.
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We can't pick thexmax andxmin as those starting points, since they will be the outliers
themselves, as we have noticed. So we will use our earlier idea of a value which is typical
for the larger part of the data, the quartileQ3, andQ1 for the corresponding lower part of
the data.

Now we need to decide how far isfar enough awayfrom those quartiles to count as an
outlier. If the data already has a lot of variation, then a newdata value would have to be
quite far in order for us to be sure that it is not out there justbecause of the variation already
in the data. So our measure offar enoughshould be in terms of a measure of spread of the
data.

Looking at the last section, we see that only theIQR is a measure of spread which is
insensitive to outliers – and we de�nitely don't want to use ameasure which is sensitive
to the outliers, one which would have been affected by the very outliers we are trying to
de�ne.

All this goes together in the following

DEFINITION 1.5.13. [The1:5IQR Rule for Outliers ] Starting with a quantitative
dataset whose �rst and third quartiles areQ1 and Q3 and whose inter-quartile range is
IQR , a data valuex is [of�cially, from now on] called anoutlier if x < Q 1 � 1:5IQR or
x > Q 3 + 1:5IQR .

Notice this means thatx is not an outlier if it satis�esQ1 � 1:5IQR � x � Q3 + 1:5IQR .

EXAMPLE 1.5.14. Let's see if there were any outliers in the test scoredataset from
Example 1.3.1. We found the quartiles andIQR in Example 1.5.7, so from the1:5IQR
Rule, a data valuex will be an outlier if

x < Q 1 � 1:5IQR = 70 � 1:5 � 18 = 43

or if

x > Q 3 + 1:5IQR = 88 + 1 :5 � 18 = 115:

Looking at the stemplot in Table 1.3.1, we conclude that the data values25, 25, and40are
the outliers in this dataset.

EXAMPLE 1.5.15. Applying the same method to the data in Example 1.4.2, using the
quartiles andIQR from Example 1.5.8, the condition for an outlierx is

x < Q 1 � 1:5IQR = � 1:19575� 1:5 � 10:69575 = � 17:239375

or

x > Q 3 + 1:5IQR = 9:5 + 1:5 � 10:69575 = 25:543625:

Since none of the data values satisfy either of these conditions, there are no outliers in this
dataset.
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1.5.6. The Five-Number Summary and Boxplots.We have seen that numerical sum-
maries of quantitative data can be very useful for quickly understanding (some things about)
the data. It is therefore convenient for a nice package of several of these

DEFINITION 1.5.16. Given a quantitative datasetf x1; : : : ; xng, the�ve-number sum-
mary4 of this data is the set of values

f xmin ; Q1; median; Q3; xmax g

EXAMPLE 1.5.17. Why not write down the �ve-number summary for the same test
score data we saw in Example 1.3.1? We've already done most ofthe work, such as calcu-
lating the min and max in Example 1.5.3, the quartiles in Example 1.5.7, and the median in
Example 1.4.10, so the �ve-number summary is

xmin = 25

Q1 = 70

median = 76:5

Q3 = 88

xmax = 100

EXAMPLE 1.5.18. And, for completeness, the �ve number summary for the made-up
data in Example 1.4.2 is

xmin = � 3:1415

Q1 = � 1:9575

median = 1

Q3 = 9:5

xmax = 17

where we got the min and max from Example 1.5.4, the median from Example 1.4.9, and
the quartiles from Example 1.5.8.

As we have seen already several times, it is nice to have a botha numeric and a graph-
ical/visual version of everything. The graphical equivalent of the �ve-number summary
is

DEFINITION 1.5.19. Given some quantitative data, aboxplot [sometimesbox-and-
whisker plot] is a graphical depiction of the �ve-number summary, as follows:

4Which might write 5N� ary for short.
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� an axis is drawn, labelled with the variable of the study
� tick marks and numbers are put on the axis, enough to allow thefollowing visual

features to be located numerically
� a rectangle (thebox) is drawn parallel to the axis, stretching from valuesQ1 to Q3

on the axis
� an addition line is drawn, parallel to the sides of the box at locationsxmin and

xmax , at the axis coordinate of the median of the data
� lines are drawn parallel to the axis from the middle of sides of the box at the

locationsxmin andxmax out to the axis coordinatesxmin andxmax , where these
whiskersterminate in “T”s.

EXAMPLE 1.5.20. A boxplot for the test score data we started using in Example 1.3.1
is easy to make after we found the corresponding �ve-number summary in Example 1.5.17:

Sometimes it is nice to make a version of the boxplot which is less sensitive to outliers.
Since the endpoints of the whiskers are the only parts of the boxplot which are sensitive in
this way, they are all we have to change:

DEFINITION 1.5.21. Given some quantitative data, aboxplot showing outliers[some-
timesbox-and-whisker plot showing outliers] is minor modi�cation of the regular box-
plot, as follows

� the whiskers only extend as far as the largest and smallest non-outlier data values
� dots are put along the lines of the whiskers at the axis coordinates of any outliers

in the dataset

EXAMPLE 1.5.22. A boxplot showing outliers for the test score data westarted using
in Example 1.3.1 is only a small modi�cation of the one we justmade in Example 1.5.20
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Exercises

EXERCISE 1.1. A product development manager at the campus bookstore wants to
make sure that the backpacks being sold there are strong enough to carry the heavy books
students carry around campus. The manager decides she will collect some data on how
heavy are the bags/packs/suitcases students are carrying around at the moment, by stopping
the next 100 people she meets at the center of campus and measuring.

What are the individuals in this study? What is the population? Is there a sample –
what is it? What is the variable? What kind of variable is this?

EXERCISE 1.2. During a blood drive on campus, 300 donated blood. Of these, 136 had
blood of typeO, 120 had blood of typeA, 32 of typeB, and the rest of typeAB .

Answer the same questions as in the previous exercise for this new situation.
Now make at least two visual representations of these data.

EXERCISE 1.3. Go to theWikipedia page for “Heights of Presidents and Presidential
Candidates of the United States” and look only at the heightsof the presidents themselves,
in centimeters (cm).

Make a histogram with these data using bins of width 5. Explain how you are handling
the edge cases in your histogram.

EXERCISE1.4. Suppose you go to the supermarket every week for a year and buy a bag
of �our, packaged by a major national �our brand, which is labelled as weighing1kg. You
take the bag home and weigh it on an extremely accurate scale that measures to the nearest
1=100th of a gram. After the 52 weeks of the year of �our buying, you make a histogram
of the accurate weights of the bags. What do you think that histogram will look like? Will
it be symmetric or skewed left or right (which one?), where will its center be, will it show
a lot of variation/spread or only a little? Explain why you think each of the things you say.

What about if you buy a1kg loaf of bread from the local artisanal bakery – what would
the histogram of the accurate weights of those loaves look like (same questions as for
histogram of weights of the bags of �our)?

If you said that those histograms were symmetric, can you think of a measurement
you would make in a grocery store or bakery which would be skewed; and if you said
the histograms for �our and loaf weights were skewed, can youthink of one which would
be symmetric? (Explain why, always, of course.) [If you think one of the two above
histograms was skewed and one was symmetric (with explanation), you don't need to come
up with another one here.]

https://en.wikipedia.org/wiki/Heights_of_presidents_and_presidential_candidates_of_the_United_States
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EXERCISE 1.5. Twenty sacks of grain weigh a total of1003kg. What is the mean
weight per sack?

Can you determine the median weight per sack from the given information? If so,
explain how. If not, give two examples of datasets with the same total weight be different
medians.

EXERCISE 1.6. For the datasetf 6; � 2; 6; 14; � 3; 0; 1; 4; 3; 2; 5g, which we will call
DS1, �nd the mode(s), mean, and median.

De�ne DS2 by adding3 to each number inDS1. What are the mode(s), mean, and
median ofDS2?

Now de�ne DS3 by subtracting6 from each number inDS1. What are the mode(s),
mean, and median ofDS3?

Next, de�ne DS4 by multiplying every number inDS1 by 2. What are the mode(s),
mean, and median ofDS4?

Looking at your answers to the above calculations, how do youthink the mode(s),
mean, and median of datasets must change when you add, subtract, multiply or divide all
the numbers by the same constant? Make a speci�c conjecture!

EXERCISE1.7. There is a very hard mathematics competition in which college students
in the US and Canada can participate called theWilliam Lowell Putnam Mathematical
Competition. It consists of a six-hour long test with twelve problems, graded 0 to 10 on
each problem, so the total score could be anything from 0 to 120.

The median score last year on the Putnam exam was 0 (as it oftenis, actually). What
does this tell you about the scores of the students who took it? Be as precise as you can.
Can you tell what fraction (percentage) of students had a certain score or scores? Can you
�gure out what the quartiles must be?

EXERCISE 1.8. Find the range,IQR , and standard deviation of the following sample
dataset:

DS1 = f 0; 0; 0; 0; 0; :5; 1; 1; 1; 1; 1g :

Now �nd the range,IQR , and standard deviation of the following sample data:

DS2 = f 0; :5; 1; 1; 1; 1; 1; 1; 1; 1; 1g :

Next �nd the range,IQR , and standard deviation of the following sample data:

DS3 = f 0; 0; 0; 0; 0; 0; 0; 0; 0; :5; 1g :

Finally, �nd the range,IQR , and standard deviation of sample dataDS4, consisting of 98
0s, one .5, and one 1 (so likeDS3 except with 0 occurring 98 times instead of 9 time).
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EXERCISE 1.9. What must be true about a dataset if its range is 0? Give the most
interesting example of a dataset with range of 0 and the property you just described that
you can think of.

What must be true about a dataset if itsIQR is 0? Give the most interesting example
of a dataset withIQR of 0 and the property you just described that you can think of.

What must be true about a dataset if its standard deviation is0? Give the most interest-
ing example of a dataset with standard deviation of 0 and the property you just described
that you can think of.

EXERCISE 1.10. Here are some boxplots of test scores, out of 100, on a standardized
test given in �ve different classes – the same test, different classes. For each of these plots,
A � E, describe qualitatively (in the sense ofx1.3.4) but in as much detail as you can, what
must have been the histogram for the data behind this boxplot. Also sketch a possible such
histogram, for each case.



CHAPTER 2

Bi-variate Statistics: Basics

2.1. Terminology: Explanatory/Response or Independent/Dependent

All of the discussion so far has been for studies which have a single variable. We may
collect the values of this variable for a large population, or at least the largest sample we
can afford to examine, and we may display the resulting data in a variety of graphical ways,
and summarize it in a variety of numerical ways. But in the endall this work can only show
a single characteristic of the individuals. If, instead, wewant to study arelationship, we
need to collect two (at least) variables and develop methodsof descriptive statistics which
show the relationships between the values of these variables.

Relationships in data require at least two variables. Whilemore complex relationships
can involve more, in this chapter we will start the project ofunderstandingbivariate data,
data where we make two observations for each individual, where we have exactly two
variables.

If there is a relationship between the two variables we are studying, the most that we
could hope for would be that that relationship is due to the fact that one of the variables
causesthe other. In this situation, we have special names for thesevariables

DEFINITION 2.1.1. In a situation with bivariate data, if one variable can take on any
value without (signi�cant) constraint it is called theindependent variable, while the sec-
ond variable, whose value is (at least partially) controlled by the �rst, is called thedepen-
dent variable.

Since the value of the dependent variable depends upon the value of the independent
variable, we could also say that it is explained by the independent variable. Therefore the
independent variable is also called theexplanatory variable and the dependent variable is
then called theresponse variable

Whenever we have bivariate data and we have made a choice of which variable will
be the independent and which the dependent, we writex for the independent andy for the
dependent variable.

EXAMPLE 2.1.2. Suppose we have a large warehouse of many different boxes of prod-
ucts ready to ship to clients. Perhaps we have packed all the products in boxes which are
perfect cubes, because they are stronger and it is easier to stack them ef�ciently. We could
do a study where

� theindividualswould be the boxes of product;

33
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� thepopulationwould be all the boxes in our warehouse;
� the independent variablewould be, for a particular box, the length of its side in

cm;
� thedependent variablewould be, for a particular box, the cost to the customer of

buying that item, in US dollars.

We might think that the sizedeterminesthe cost, at least approximately, because the
larger boxes contain larger products into which went more raw materials and more labor,
so the items would be more expensive. So, at least roughly, the size may be anything, it is
a free orindependentchoice, while the cost is (approximately) determined by thesize, so
the cost isdependent. Otherwise said, the sizeexplainsand the cost is theresponse. Hence
the choice of those variables.

EXAMPLE 2.1.3. Suppose we have exactly the same scenario as above, but now we
want to make the different choice where

� thedependent variablewould be, for a particular box, the volume of that box.

There is one quite important difference between the two examples above: in one case
(the cost), knowing the length of the side of a box give us a hint about how much it costs
(bigger boxes cost more, smaller boxes cost less) but this knowledge is imperfect (some-
times a big box is cheap, sometimes a small box is expensive);while in the other case (the
volume), knowing the length of the side of the box perfectly tells us the volume. In fact,
there is a simple geometric formula that the volumeV of a cube of side lengths is given
by V = s3.

This motivates a last preliminary de�nition

DEFINITION 2.1.4. We say that the relationship between two variables isdeterministic
if knowing the value of one variable completely determines the value of the other. If,
instead, knowing one value does not completely determine the other, we say the variables
have anon-deterministic relationship.
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2.2. Scatterplots

When we have bivariate data, the �rst thing we should always do is draw a graph of this
data, to get some feeling about what the data is showing us andwhat statistical methods it
makes sense to try to use. The way to do this is as follows

DEFINITION 2.2.1. Given bivariate quantitative data, we make thescatterplot of this
data as follows: Draw anx- and ay-axis, and label them with descriptions of the indepen-
dent and dependent variables, respectively. Then, for eachindividual in the dataset, put a
dot on the graph at location(x; y), if x is the value of that individual's independent variable
andy the value of its dependent variable.

After making a scatterplot, we usually describe it qualitatively in three respects:

DEFINITION 2.2.2. If the cloud of data points in a scatterplot generallylies near some
curve, we say that the scatterplot has [approximately] thatshape.

A common shape we tend to �nd in scatterplots is that it islinear
If there is no visible shape, we say the scatterplot isamorphous, orhas no clear shape.

DEFINITION 2.2.3. When a scatterplot has some visible shape – so that we do not
describe it as amorphous – how close the cloud of data points is to that curve is called the
strength of that association. In this context, astrong [linear, e.g.,] association means that
the dots are close to the named curve [line,e.g.,], while aweak association means that the
points do not lie particularly close to any of the named curves [line,e.g.,].

DEFINITION 2.2.4. In case a scatterplot has a fairly strong linear association, thedi-
rection of the association described whether the line is increasingor decreasing. We say
the association ispositive if the line is increasing andnegativeif it is decreasing.

[Note that the wordspositiveand negativehere can be thought of as describing the
slopeof the line which we are saying is the underlying relationship in the scatterplot.]
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2.3. Correlation

As before (inxx1.4 and 1.5), when we moved from describing histograms with words
(like symmetric) to describing them with numbers (like themean), we now will build a
numeric measure of the strength and direction of a linear association in a scatterplot.

DEFINITION 2.3.1. Given bivariate quantitative dataf (x1; y1); : : : ; (xn ; yn)g the[Pear-
son] correlation coef�cient of this dataset is

r =
1

n � 1

X (x i � x)
sx

(yi � y)
sy

wheresx andsy are the standard deviations of thex andy, respectively, datasets by them-
selves.

We collect some basic information about the correlation coef�cient in the following

FACT 2.3.2. For any bivariate quantitative datasetf (x1; y1); : : : ; (xn ; yn)g with corre-
lation coef�cient r , we have

(1) � 1 � r � 1 is always true;
(2) if jr j is near1 – meaning thatr is near� 1 – then the linear association betweenx

andy is strong
(3) if r is near0 – meaning thatr is positive or negative, but near0 – then the linear

association betweenx andy is weak
(4) if r > 0 then the linear association betweenx andy is positive, while ifr < 0

then the linear association betweenx andy is negative
(5) r is the same no matter what units are used for the variablesx andy – meaning

that if we change the units in either variable,r will not change
(6) r is the same no matter which variable is begin used as the explanatory and which

as the response variable – meaning that if we switch the rolesof thex and they in
our dataset,r will not change.

It is also nice to have some examples of correlation coef�cients, such as
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Many electronic tools which compute the correlation coef�cient r of a dataset also
report its square,r 2. There reason is explained in the following

FACT 2.3.3. If r is the correlation coef�cient between two variablesx andy in some
quantitative dataset, then its squarer 2 it the fraction (often described as a percentage) of
the variation ofy which is associated with variation inx.

EXAMPLE 2.3.4. If the square of the correlation coef�cient between the independent
variablehow many hours a week a student studies statisticsand the dependent variablehow
many points the student gets on the statistics �nal examis :64, then 64% of the variation in
scores for that class is cause by variation in how much the students study. The remaining
36% of the variation in scores is due to other random factors like whether a student was
coming down with a cold on the day of the �nal, or happened to sleep poorly the night
before the �nal because of neighbors having a party, or some other issues different just
from studying time.
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Exercises

EXERCISE2.1. Suppose you pick 50 random adults across the United States in January
2017 and measure how tall they are. For each of them, you also get accurate information
about how tall their (biological) parents are. Now, using asyour individuals these 50 adults
and as the two variables their heights and the average of their parents' heights, make a
sketch of what you think the resulting scatterplot would look like. Explain why you made
the choice you did of one variable to be the explanatory and the other the response variable.
Tell what are the shape, strength, and direction you see in this scatterplot, if it shows a
deterministic or non-deterministic association, and why you think those conclusions would
be true if you were to do this exercise with real data.

Is there any time or place other than right now in the United States where you think the
data you would collect as above would result in a scatterplotthat would look fairly different
in some signi�cant way? Explain!

EXERCISE 2.2. It actually turns out that it is not true that the more a person works, the
more they produce ... at least not always. Data on workers in awide variety of industries
show that working more hours produces more of that business's product for a while, but
then after too many hours of work, keeping on working makes for almost no additional
production.

Describe how you might collect data to investigate this relationship, by telling what
individuals, population, sample, and variables you would use. Then, assuming the truth of
the above statement about what other research in this area has found, make an example of
a scatterplot that you think might result from your suggested data collection.

EXERCISE 2.3. Make a scatterplot of the dataset consisting of the following pairs of
measurements:

f (8; 16); (9; 9); (10; 4); (11; 1); (12; 0); (13; 1); (14; 4); (15; 9); (16; 16)g:

You can do this quite easily by hand (there are only nine points!). Feel free to use an
electronic device to make the plot for you, if you have one youknow how to use, but copy
the resulting picture into the homework you hand in, either by hand or cut-and-paste into
an electronic version.

Describe the scatterplot, telling what are the shape, strength, and direction. What do
you think would be the correlation coef�cient of this dataset? As always, explain all of
your reasoning!



CHAPTER 3

Linear Regression

Quick review of equations for lines:
Recall the equation of a line is usually in the formy = mx + b, wherex andy are

variables andm andbare numbers. Some basic facts about lines:

� If you are given a number forx, you can plug it in to the equationy = mx + bto
get a number fory, which together give you a point with coordinates(x; y) that is
on the line.

� m is theslope, which tells how much the line goes up (increasingy) for every unit
you move over to the right (increasingx) – we often say that the value of the slope
is m = rise

run . It can be
– positive, if the line is tilted up,
– negative, if the line is tilted down,
– zero, if the line is horizontal, and
– unde�ned, if the line is vertical.

� You can calculate the slope by �nding the coordinates(x1; y1) and(x2; y2) of any
two points on the line and thenm = y2 � y1

x2 � x1
.

� In particular,x2 � x1 = 1, thenm = y2 � y1
1 = y2 � y1 – so if you look at how

much the line goes up in each step of one unit to the right, thatnumber will be
the slopem (and if it goesdown, the slopem will simply be negative). In other
words, the slope answers the question “for each step to the right, how much does
the line increase (or decrease)?”

� bis they-intercept, which tells they-coordinate of the point where the line crosses
they-axis. Another way of saying that is thatb is they value of the line when the
x is 0.

3.1. The Least Squares Regression Line

Suppose we have some bivariate quantitative dataf (x1; y1); : : : ; (xn ; yn)g for which the
correlation coef�cient indicates some linear association. It is natural to want to write down
explicitly the equation of the best line through the data – the question is what is this line.
The most common meaning given tobestin this search for the line isthe line whose total
square error is the smallest possible.We make this notion precise in two steps

39
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DEFINITION 3.1.1. Given a bivariate quantitative datasetf (x1; y1); : : : ; (xn ; yn )g and
a candidate lineby = mx + b passing through this dataset, aresidual is the difference in
y-coordinates of an actual data point(x i ; yi ) and the line'sy value at the samex-coordinate.
That is, if they-coordinate of the line whenx = x i is byi = mx i + b, then the residual is the
measure of error given byerror i = yi � byi .

Note we use the convention here and elsewhere of writingby for they-coordinate on an
approximating line, while the plainy variable is left for actual data values, likeyi .

Here is an example of what residuals look like

Now we are in the position to state the

DEFINITION 3.1.2. Given a bivariate quantitative dataset theleast square regression
line, almost always abbreviated toLSRL, is the line for which the sum of the squares of
the residuals is the smallest possible.

FACT 3.1.3. If a bivariate quantitative datasetf (x1; y1); : : : ; (xn ; yn )g has LSRL given
by by = mx + b, then

(1) The slope of the LSRL is given bym = r sy

sx
, wherer is the correlation coef�cient

of the dataset.
(2) The LSRL passes through the point(x; y).
(3) It follows that they-intercept of the LSRL is given byb= y � x m = y � x r sy

sx
.

It is possible to �nd the (coef�cients of the) LSRL using the above information, but it
is often more convenient to use a calculator or other electronic tool. Such tools also make
it very easy to graph the LSRL right on top of the scatterplot –although it is often fairly
easy to sketch what the LSRL will likely look like by just making a good guess, using
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visual intuition, if the linear association is strong (as will be indicated by the correlation
coef�cient).

EXAMPLE 3.1.4. Here is some data where the individuals are 23 students in a statistics
class, the independent variable is the students' total score on their homeworks, while the
dependent variable is their �nal total course points, both out of 100.

x : 65 65 50 53 59 92 86 84 29
y : 74 71 65 60 83 90 84 88 48

x : 29 9 64 31 69 10 57 81 81
y : 54 25 79 58 81 29 81 94 86

x : 80 70 60 62 59
y : 95 68 69 83 70

Here is the resulting scatterplot, made withLibreOf�ce Calc (a free equivalent ofMi-
crosoft Excel)

It seems pretty clear that there is quite a strong linear association between these two vari-
ables, as is born out by the correlation coef�cient,r = :935(computed withLibreOf�ce
Calc's CORREL). Using thenSTDEV.S andAVERAGE, we �nd that the coef�cients of the
LSRL for this data,by = mx + bare

m = r
sy

sx
= :935

18:701
23:207

= :754 and b= y � x m = 71 � 58� :754 = 26:976
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We can also useLibreOf�ce Calc 's Insert Trend Line , with Show Equation ,
to get all this done automatically. Note that whenLibreOf�ce Calc writes the equation of
the LSRL, it usesf (x) in place ofby, as we would.
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3.2. Applications and Interpretations of LSRLs

Suppose that we have a bivariate quantitative datasetf (x1; y1); : : : ; (xn ; yn)g and we
have computed its correlation coef�cientr and (the coef�cients of) its LSRLby = mx + b.
What is this information good for?

The main use of the LSRL is described in the following

DEFINITION 3.2.1. Given a bivariate quantitative dataset and associated LSRL with
equationby = mx + b, the process of guessing that the value of the dependent variable in
this relationship to have the valuemx0 + b, for x0 any value for the independent variable
which satis�esxmin � x0 � xmax , is calledinterpolation.

The idea of interpolation is that we think the LSRL describesas well as possible the
relationship between the independent and dependent variables, so that if we have a newx
value, we'll use the LSRL equation to predict what would be our best guess of what would
be the correspondingy. Note we might have a new value ofx because we simply lost part
of our dataset and are trying to �ll it in as best we can. Another reason might be that a new
individual came along whose value of the independent variable, x0, was typical of the rest
of the dataset – so the the very leastxmin � x0 � xmax – and we want to guess what will
be the value of the dependent variable for this individual before we measure it. (Or maybe
we cannot measure it for some reason.)

A common (but naive) alternate approach to interpolation for a valuex0 as above might
be to �nd two valuesx i andx j in the dataset which were as close tox0 as possible, and on
either side of it (sox i < x 0 < x j ), and simply to guess that they-value forx0 would be
the average ofyi andyj . This is not a terrible idea, but it is not as effective as using the
LSRL as described above, since we use the entire dataset whenwe build the coef�cients of
the LSRL. So the LSRL will give, by the process of interpolation, the best guess for what
should be that missingy-value based on everything we know, while the “average ofyi and
yj ” method only pays attention to those two nearest data pointsand thus may give a very
bad guess for the correspondingy-value if those two points are not perfectly typical, if they
have any randomness, any variation in theiry-values which is not due to the variation of
thex.

It is thus always best to use interpolation as described above.

EXAMPLE 3.2.2. Working with the statistics students' homework and total course points
data from Example 3.1.4, suppose the gradebook of the courseinstructor was somewhat
corrupted and the instructor lost the �nal course points of the student Janet. If Janet's
homework points of 77 were not in the corrupted part of the gradebook, the instructor
might use interpolation to guess what Janet's total course point probably were. To do this,
the instructor would have plugged inx = 77 into the equation of the LSRL,by = mx + bto
get the estimated total course points of:754� 77 + 26:976 = 85:034.
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Another important use of the (coef�cients of the) LSRL is to use the underlying mean-
ings of the slope andy-intercept. For this, recall that in the equationy = mx + b, the slope
m tells us how much the line goes up (or down, if the slope is negative) for each increase of
thex by one unit, while they-interceptb tells us what would be they value where the line
crosses they-axis, so when thex has the value 0. In each particular situation that we have
bivariate quantitative data and compute an LSRL, we can thenuse these interpretations to
make statements about the relationship between the independent and dependent variables.

EXAMPLE 3.2.3. Look one more time at the data on students' homework and total
course points in a statistics class from Example 3.1.4, and the the LSRL computed there.
We said that the slope of the LSRL wasm = :754and they-intercept wasb = 26:976.
In context, what this means, is thatOn average, each additional point of homework cor-
responded to an increase of:754 total course points.We may hope that this is actually
a causal relationship, that the extra work a student does to earn that additional point of
homework score helps the student learn more statistics and therefore get:75 more total
course points. But the mathematics here does not require that causation, it merely tells us
the increase inx is associatedwith that much increase iny.

Likewise, we can also conclude from the LSRL thatIn general, a student who did no
homework at all would earn about26:976total course points.Again, we cannot conclude
that doing no homeworkcausesthat terrible �nal course point total, only that there is an
association.
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3.3. Cautions

3.3.1. Sensitivity to Outliers. The correlation coef�cient and the (coef�cients of the)
LSRL are built out of means and standard deviations and therefore the following fact is
completely unsurprising

FACT 3.3.1. The correlation coef�cient and the (coef�cients of the) LSRL are very
sensitive to outliers.

What perhaps is surprising here is that the outliers for bivariate data are a little different
from those for 1-variable data.

DEFINITION 3.3.2. Anoutlier for a bivariate quantitative dataset is one which is far
away from the curve which has been identi�ed as underlying the shape of the scatterplot
of that data. In particular, a point(x; y) can be a bivariate outlier even if bothx is not an
outlier for the independent variable data considered aloneandy is not an outlier for the
dependent variable data alone.

EXAMPLE 3.3.3. Suppose we add one more point(90; 30) to the dataset in Exam-
ple 3.1.4. Neither thex- nor y-coordinates of this point are outliers with respect to their
respective single-coordinate datasets, but it is nevertheless clearly a bivariate outlier, as can
be seen in the new scatterplot

In fact recomputing the correlation coef�cient and LSRL, we�nd quite a change from what
we found before, in Example 3.1.4:

r = :704 [which used to be:935]
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and

by = :529x + 38:458 [which used to be:754x + 26:976]

all because of one additional point!

3.3.2. Causation.The attentive reader will have noticed that we started our discussion
of bivariate data by saying we hoped to study when one thingcausesanother. However,
what we've actually done instead is �ndcorrelation between variables, which is quite a
different thing.

Now philosophers have discussed what exactly causationis for millennia, so certainly
it is a subtle issue that we will not resolve here. In fact, careful statisticians usually dodge
the complexities by talking aboutrelationships, association, and, of course, thecorrelation
coef�cient, being careful always not to commit tocausation– at least based only on an
analysis of the statistical data.

As just one example, where we spoke about the meaning of the squarer 2 of the cor-
relation coef�cient (we called it Fact 2.3.3), we were careful to say thatr 2 measures the
variation of the dependent variable which isassociatedwith the variation of the indepen-
dent variable. A more reckless description would have been to say that onecausedthe
other – but don't fall into that trap!

This would be a bad idea because (among other reasons) the correlation coef�cient
is symmetric in the choice of explanatory and response variables (meaningr is the same
no matter which is chosen for which role), while any reasonable notion of causation is
asymmetric.E.g., while the correlation is exactly the same very large value with either
variable beingx and whichy, most people would say thatsmoking causes cancerand not
the other way1!

We do need to make one caution about this caution, however. Ifthere is a causal rela-
tionship between two variables that are being studied carefully, then there will be correla-
tion. So, to quote the great data scientist Edward Tufte [Tuf06],

Correlation is not causation but it sure is a hint.

The �rst part of this quote (up to the “but”) is much more famous and, as a very �rst step, is
a good slogan to live by. Those with a bit more statistical sophistication might instead learn
this version, though. A more sophisticated-sounding version, again due to Tufte [Tuf06],
is

Empirically observed covariation is a necessary but not suf�cient condi-
tion for causality.

1Although in the 1950s a doctor (who later was found to be in thepay of the tobacco industry) did say

that the clear statistical evidence of association betweensmoking and cancer might be a sign that cancer
causes smoking (I know: crazy!). His theory was that people who have lung tissue which is more prone to

developing cancer are more likely to start smoking because somehow the smoke makes that particular tissue
feel better. Needless to say, this is not the accepted medical view, because lots of evidence goes against it.



3.3. CAUTIONS 47

3.3.3. Extrapolation. We have said that visual intuition often allows humans to sketch
fairly good approximations of the LSRL on a scatterplot, so long as the correlation coef�-
cient tells us there is a strong linear association. If the diligent reader did that with the �rst
scatterplot in Example 3.1.4, probably the resulting line looked much like the line which
LibreOf�ce Calc produced – except humans usually sketch their line all the way to the left
and right edges of the graphics box. Automatic tools likeLibreOf�ce Calc do not do that,
for a reason.

DEFINITION 3.3.4. Given a bivariate quantitative dataset and associated LSRL with
equationby = mx + b, the process of guessing that the value of the dependent variable in
this relationship to have the valuemx0 + b, for x0 any value for the independent variable
which does not satisfyxmin � x0 � xmax [so, instead, eitherx0 < x min or x0 > x max ], is
calledextrapolation.

Extrapolation is considered a bad, or at least risky, practice. The idea is that we used
the evidence in the datasetf (x1; y1); : : : ; (xn ; yn)g to build the LSRL, but, by de�nition,
all of this data lies in the interval on thex-axis fromxmin to xmax . There is literally no
evidence from this dataset about what the relationship between our chosen explanatory and
response variables will be forx outside of this interval. So in the absence of strong reasons
to believe that the precise linear relationship described by the LSRL will continue for more
x's, we should not assume that it does, and therefore we shouldnot use the LSRL equation
to guess values by extrapolation.

The fact is, however, that often the best thing we can do with available information
when we want to make predictions out into uncharted territory on thex-axis is extrapola-
tion. So while it is perilous, it is reasonable to extrapolate, so long as you are clear about
what exactly you are doing.

EXAMPLE 3.3.5. Using again the statistics students' homework and total course points
data from Example 3.1.4, suppose the course instructor wanted to predict what would be
the total course points for a student who had earned a perfect100points on their homework.
Plugging into the LSRL, this would have yielded a guess of:754� 100 + 26:976 = 102:376.
Of course, this would have been impossible, since the maximum possible total course score
was100. Moreover, making this guess is an example of extrapolation, since thex value of
100is beyond the largestx value ofxmax = 92 in the dataset. Therefore we should not rely
on this guess – as makes sense, since it is invalid by virtue ofbeing larger than100.

3.3.4. Simpson's Paradox.Our last caution is not so much a way using the LSRL can
go wrong, but instead a warning to be ready for something verycounter-intuitive to happen
– so counter-intuitive, in fact, that it is called a paradox.

It usually seems reasonable that if some object is cut into two pieces, both of which
have a certain property, then probably the whole object alsohas that same property. But
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if the object in question isa populationand the property ishas positive correlation, then
maybe the unreasonable thing happens.

DEFINITION 3.3.6. Suppose we have a population for which we have a bivariate quan-
titative dataset. Suppose further that the population is broken into two (or more) sub-
populations for all of which the correlation between the twovariables ispositive, but the
correlation of the variables for the whole dataset isnegative. Then this situation is called
Simpson's Paradox. [It's also called Simpson's Paradox if the role ofpositiveandnegative
is reversed in our assumptions.]

The bad news is that Simpson's paradox can happen.

EXAMPLE 3.3.7. LetP = f (0; 1); (1; 0); (9; 10); (10; 9)g be a bivariate dataset, which
is broken into the two subpopulationsP1 = f (0; 1); (1; 0)g andP2 = f (9; 10); (10; 9)g.
Then the correlation coef�cients of bothP1 andP2 arer = � 1, but the correlation of all
of P is r = :9756. This is Simpson's Paradox!

Or, in applications, we can have situations like

EXAMPLE 3.3.8. Suppose we collect data on two sections of a statistics course, in
particular on how many hours per work the individual students study for the course and
how they do in the course, measured by their total course points at the end of the semester.
It is possible that there is a strong positive correlation between these variables for each
section by itself, but there is a strong negative correlation when we put all the students into
one dataset. In other words, it is possible that the rationaladvice, based on both individual
sections, isstudy more and you will do better in the course, but that the rational advice
based on all the student data put together isstudy less and you will do better.
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Exercises

EXERCISE 3.1. The age (x) and resting heart rate (RHR,y) were measured for nine
men, yielding this dataset:

x : 20 23 30 37 35 45 51 60 63
y : 72 71 73 74 74 73 75 75 77

Make a scatterplot of these data.
Based on the scatterplot, what do you think the correlation coef�cient r will be?
Now computer .
Compute the LSRL for these data, write down its equation, andsketch it on top of your

scatterplot.
[You may, of course, do as much of this with electronic tools as you like. However, you

should explain what tool you are using, how you used it, and what it must have been doing
behind the scenes to get the results which it displayed and you are turning in.]

EXERCISE 3.2. Continuing with the data and computations of the previous problem:
What percentage of the variation in RHR is associated with variation in age?
Write the following sentences with blanks �lled in: “If I measured the RHR of a 55

year-old man, I would expect it to be . Making an estimate like this is called
.”

Just looking at the equation of the LSRL, what does it suggestshould be the RHR of a
newborn baby? Explain.

Also explain what an estimate like yours for the RHR of a baby is called. This kind
of estimate is considered a bad idea in many cases – explain why in general, and also use
speci�cs from this particular case.

EXERCISE3.3. Write down a bivariate quantitative dataset for a population of only two
individuals whose LSRL isby = 2x � 1.

What is the correlation coef�cient of your dataset?
Next, add one more point to the dataset in such a way that you don't change the LSRL

or correlation coef�cient.
Finally, can your �nd a dataset with the same LSRL but having alarger correlation

coef�cient than you just had?
[Hint: fool around with modi�cations or additions to the datasets in you already found

in this problem, using an electronic tool to do all the computational work. When you �nd a
good one, write it down and explain what you thinking was as you searched for it.]





Part 2

Good Data



It is something of an aphorism among statisticians that

The plural of anecdote is not data.2

The distinction being emphasized here is between the information we might get from a
personal experience or a friend's funny story – an anecdote –and the cold, hard, objective
information on which we want to base our scienti�c investigations of the world – data.

In this Part, our goal is to discuss aspects of getting good data. It may seem counter-
intuitive, but the �rst step in that direction is to develop some of the foundations ofprob-
ability theory, the mathematical study of systems which are non-deterministic – random
– but in a consistent way. The reason for this is that the easiest and most reliable way to
ensure objectivity in data, to suppress personal choices which may result in biased infor-
mation from which we cannot draw universal, scienti�c conclusions, is to collect your data
randomly. Randomness is a tool which the scientist introduces intentionally and carefully,
as barrier against bias, in the collection of high quality data. But this strategy only works if
we can understand how to extract precise information even inthe presence of randomness
– hence the importance of studying probability theory.

After a chapter on probability, we move on to a discussion of some fundamentals of
experimental design– starting, not surprisingly, withrandomization, but �nishing with
the gold standard for experiments (on humans, at least):randomized, placebo-controlled,
double-blind experiments [RCTs]. Experiments whose subjects are not humans share some,
but not all, of these design goals

It turns out that, historically, a number of experiments with human subjects have had
very questionable moral foundations, so it is very important to stop, as we do in the last
chapter of this Part, to build a outline ofexperimental ethics.

2It is hard to be certain of the true origins of this phrase. Thepolitical scientist Raymond Wol�nger

is sometimes given credit [PB] – for a versionwithout the“not,” actually. Sometime later, then, it became
widespread with the “not.”



CHAPTER 4

Probability Theory

We want to imagine doing an experiment in which there is no wayto predict what the
outcome will be. Of course, if we stop our imagination there,there would be nothing we
could say and no point in trying to do any further analysis: the outcome would just be
whatever it wanted to be, with no pattern.

So let us add the additional assumption that while wecannot predictwhat will happen
any particular time we do the experiment, wecan predictgeneral trends, in the long run,
if we repeat the experiment many times. To be more precise, weassume that, for any
collectionE of possible outcomes of the experiment there is a numberp(E) such that, no
matter who does the experiment, no matter when they do it, if they repeat the experiment
many times, the fraction of times they would have seen any of the outcomes ofE would be
close to that numberp(E).

This is called thefrequentistapproach to the idea of probability. While it is not uni-
versally accepted – theBayesianalternative does in fact have many adherents – it has the
virtue of being the most internally consistent way of building a foundation for probability.
For that reason, we will follow the frequentist descriptionof probability in this text.

Before we jump into the mathematical formalities, we shouldmotivate two pieces of
what we just said. First, why talk aboutsetsof outcomes of the experiment instead of
talking about individual outcomes? The answer is that we areoften interested in sets of
outcomes, as we shall see later in this book, so it is nice to set up the machinery from the
very start to work with such sets. Or, to give a particular concrete example, suppose you
were playing a game of cards and could see your hand but not theother players' hands.
You might be very interested in how likely is it that your handis a winning hand,i.e., what
is the likelihood of the set of all possible con�gurations ofall the rest of the cards in the
deck and in your opponents' hands for which what you have willbe the winning hand? It
is situations like this which motivate an approach based onsetsof outcomes of the random
experiment.

Another question we might ask is: where does our uncertaintyabout the experimental
results come from? From the beginnings of the scienti�c method through the turn of the
20th century, it was thought that this uncertainty came from our incomplete knowledge of
the system on which we were experimenting. So if the experiment was, say, �ipping a
coin, the precise amount of force used to propel the coin up into the air, the precise angular
motion imparted to the coin by its position just so on the thumbnail of the person doing
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the �ipping, the precise drag that the coin felt as it tumbledthrough the air caused in part
by eddies in the air currents coming from the �ap of a butter�y's wings in the Amazon
rainforest – all of these things could signi�cantly contribute to changing whether the coin
would eventually come upheadsor tails. Unless the coin-�ipper was a robot operating in a
vacuum, then, there would just be no way to know all of these physical details with enough
accuracy to predict the toss.

After the turn of the20th century, matters got even worse (at least for physical deter-
minists): a new theory of physics came along then, calledQuantum Mechanics, according
to which true randomness is built into the laws of the universe. For example, if you have
a very dim light source, which produces the absolutely smallest possible “chunks” of light
(calledphotons), and you shine it through �rst one polarizing �lter and thensee if it goes
through a second �lter at a45� angle to the �rst, then half the photons will get through the
second �lter, but there isabsolutely no way ever to predict whether any particular photon
will get though or not. Quantum mechanics is full of very weird, non-intuitive ideas, but it
is one of the most well-tested theories in the history of science, and it has passed every test.
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4.1. De�nitions for Probability

4.1.1. Sample Spaces, Set Operations, and Probability Models. Let's get right to
the de�nitions.

DEFINITION 4.1.1. Suppose we have a repeatable experiment we want to investigate
probabilistically. The things that happen when we do the experiment, the results of running
it, are called the [experimental] outcomes. The set of all outcomes is called thesample
spaceof the experiment. We almost always use the symbolS for this sample space.

EXAMPLE 4.1.2. Suppose the experiment we are doing is “�ip a coin.” Then the sample
space would beS = f H; T g.

EXAMPLE 4.1.3. For the experiment “roll a [normal, six-sided] die,”the sample space
would beS = f 1; 2; 3; 4; 5; 6g.

EXAMPLE 4.1.4. For the experiment “roll two dice,” the sample space would be

S = f 11; 12; 13; 14; 15; 16;

21; 22; 23; 24; 25; 26

31; 23; 33; 34; 35; 36

41; 42; 43; 44; 45; 46

51; 52; 53; 54; 55; 56

61; 62; 63; 64; 65; 66

where the notation “nm” means “1st roll resulted in ann, 2nd in anm.”

EXAMPLE 4.1.5. Consider the experiment “�ip a coin as many times as necessary to
see the �rstHead.” This would have the in�nite sample space

S = f H; T H; T T H; T T T H; T T T T H; : : : g :

EXAMPLE 4.1.6. Finally, suppose the experiment is “point a Geiger counter at a lump
of radioactive material and see how long you have to wait until the next click.” Then the
sample spaceS is the set of all positive real numbers, because potentiallythe waiting time
could be any positive amount of time.

As mentioned in the chapter introduction, we are more interested in

DEFINITION 4.1.7. Given a repeatable experiment with sample spaceS, an event is
any collection of [some, all, or none of the] outcomes inS; i.e., an event is anysubsetE
of S, writtenE � S.
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There is one special set which is a subset of any other set, andtherefore is an event in
any sample space.

DEFINITION 4.1.8. The setfg with no elements is called theempty set, for which we
use the notation; .

EXAMPLE 4.1.9. Looking at the sample spaceS = f H; T g in Example 4.1.2, it's pretty
clear that the following are all the subsets ofS:

;

f H g

f Tg

S [= f H; T g]

Two parts of that example are always true:; andS are always subsets of any setS.
Since we are going to be working a lot with events, which are subsets of a larger set,

the sample space, it is nice to have a few basic terms from set theory:

DEFINITION 4.1.10. Given a subsetE � S of a larger setS, thecomplement ofE, is
the setE c = f all the elements ofS whichare notin Eg.

If we describe an eventE in words as all outcomes satis�es some propertyX , the
complementary event, consisting of all the outcomes not inE, can be described as all
outcomes whichdon't satisfyX . In other words, we often describe the eventE c as the
event “not E.”

DEFINITION 4.1.11. Given two setsA andB, theirunion is the set

A [ B = f all elements which are inA or B [or both]g :

Now if eventA is those outcomes having propertyX andB is those with propertyY,
the eventA [ B , with all outcomes inA together with all outcomes inB can be described
as all outcomes satisfyingX or Y, thus we sometimes pronounce the event “A [ B” as “A
or B .”

DEFINITION 4.1.12. Given two setsA andB, their intersection is the set

A \ B = f all elements which are in bothA andBg :

If, as before, eventA consists of those outcomes having propertyX andB is those with
propertyY , the eventA \ B will consist of those outcomes which satisfy bothX andY.
In other words, “A \ B” can be described as “A and B.”

Putting together the idea of intersection with the idea of that special subset; of any set,
we get the
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DEFINITION 4.1.13. Two setsA andB are calleddisjoint if A \ B = ; . In other
words, sets are disjoint if they have nothing in common.

A exact synonym for disjoint that some authors prefer ismutually exclusive. We will
use both terms interchangeably in this book.

Now we are ready for the basic structure of probability.

DEFINITION 4.1.14. Given a sample spaceS, aprobability model onS is a choice of
a real numberP(E) for every eventE � S which satis�es

(1) For all eventsE, 0 � P(E) � 1.
(2) P(; ) = 1 andP(S) = 1 .
(3) For all eventsE, P(E c) = 1 � P(E).
(4) If A andB are any twodisjointevents, thenP(A [ B) = P(A) + P(B). [This is

called theaddition rule for disjoint events.]

4.1.2. Venn Diagrams.Venn diagrams are a simple way to display subsets of a �xed
set and to show the relationships between these subsets and even the results of various
set operations (likecomplement, union, andintersection) on them. The primary use we
will make of Venn diagrams is for events in a certain sample space, so we will use that
terminology [even though the technique has much wider application].

To make a Venn Diagram,always start out by making a rectangle to represent the whole
sample space:

Within that rectangle, we make circles, ovals, or just blobs, to indicate that portion of
the sample space which is some eventE:
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Sometimes, if the outcomes in the sample spaceS and in the eventA might be indicated
in the different parts of the Venn diagram. So, ifS = f a; b; c; dg andA = f a; bg � S, we
might draw this as

ThecomplementE c of an eventE is easy to show on a Venn diagram, since it is simply
everything which is not inE:

If the �lled part here isE ... then the �lled part here isE c

This can actually be helpful in �guring out what must be inE c. In the example above with
S = f a; b; c; dg andA = f a; bg � S, by looking at what is in the shaded exterior part for
our picture ofE c, we can see that for thatA, we would getAc = f c; dg.
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Moving now to set operations that work with two events, suppose we want to make a
Venn diagram with eventsA andB. If we know these events are disjoint, then we would
make the diagram as follows:

while if they are known not to be disjoint, we would use instead this diagram:

For example, itS = f a; b; c; dg, A = f a; bg, andB = f b; cg, we would have

When in doubt, it is probably best to use the version with overlap, which then could
simply not have any points in it (or could have zero probability, when we get to that, below).
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Venn diagrams are very good at showing unions, and intersection:

If the �lled part here isA and the �lled part here isB

then

the �lled part here isA [ B and the �lled part here isA \ B

Another nice thing to do with Venn diagrams is to use them as a visual aid for proba-
bility computations. The basic idea is to make a diagram showing the various events sitting
inside the usual rectangle, which stands for the sample space, and to put numbers in various
parts of the diagram showing the probabilities of those events, or of the results of operations
(unions, intersection, and complement) on those events.

For example, if we are told that an eventA has probabilityP(A) = :4, then we can
immediately �ll in the :4 as follows:
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But we can also put a number in the exterior of that circle which representsA, taking
advantage of the fact that that exterior isAc and the rule for probabilities of complements
(point (3) in De�nition 4.1.14) to conclude that the appropriate number is1 � :4 = :6:

We recommend that, in a Venn diagram showing probability values,you always put a
number in the region exterior to all of the events [but insidethe rectangle indicating the
sample space, of course].

Complicating a little this process of putting probability numbers in the regions of a
Venn diagram is the situation where we are giving for both an event and a subsetsubset,�
of that event. This most often happens when we are told probabilities both of some events
and of their intersection(s). Here is an example:

EXAMPLE 4.1.15. Suppose we are told that we have two eventsA andB in the sample
spaceS, which satisfyP(A) = :4, P(B) = :5, andP(A \ B) = :1. First of all, we know
thatA andB are not disjoint, since if they were disjoint, that would mean (by de�nition)
thatA \ B = ; , and sinceP(; ) = 0 butP(A \ B) 6= 0, that is not possible. So we draw a
Venn diagram that we've see before:

However, it would be unwise simply to write those given numbers :4, :5, and:1 into the
three central regions of this diagram. The reason is that thenumber:1 is the probability of
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A \ B, which is a part ofA already, so if we simply write:4 in the rest ofA, we would be
counting that:1 for theA \ B twice. Therefore, before we write a number in the rest ofA,
outside ofA \ B , we have to subtract the:1 for P(A \ B). That means that the number
which goes in the rest ofA should be:4 � :1 = :3. A similar reasoning tells us that the
number in the part ofB outside ofA \ B , should be:5 � :1 = :4. That means the Venn
diagram with all probabilities written in would be:

The approach in the above example is our second important recommendation for who
to put numbers in a Venn diagram showing probability values:always put a number in each
region which corresponds to the probability of that smallest connected region containing
the number, not any larger region.

One last point we should make, using the same argument as in the above example.
Suppose we have eventsA andB in a sample spaceS (again). Suppose we are not sure
if A andB are disjoint, so we cannot use the addition rule for disjointevents to compute
P(A [ B). But notice that the eventsA andAc are disjoint, so thatA \ B andAc \ B are
also disjoint and

A = A \ S = A \ (B [ B c) = ( A \ B) [ (A \ B c)

is a decomposition of the eventA into the two disjoint eventsA \ B andAc \ B . From the
addition rule for disjoint events, this means that

P(A) = P(A \ B) + P(A \ B c) :

Similar reasoning tells us both that

P(B) = P(A \ B) + P(Ac \ B )

and that

A [ B = ( A \ B c) [ (A \ B) [ (Ac \ B )

is a decomposition ofA [ B into disjoint pieces, so that

P(A [ B) = P(A \ B c) + P(A \ B) + P(Ac \ B ) :
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Combining all of these equations, we conclude that

P(A) + P(B) � P(A \ B) = P(A \ B) + P(A \ B c) + P(A \ B) + P(Ac \ B ) � P(A \ B)

= P(A \ B c) + P(A \ B) + P(Ac \ B ) + P(A \ B) � P(A \ B)

= P(A \ B c) + P(A \ B) + P(Ac \ B )

= P(A [ B) :

This is important enough to state as a

FACT 4.1.16. The Addition Rule for General Events If A and B are events in a
sample spaceS then we have the addition rule for their probabilities

P(A [ B) = P(A) + P(B) � P(A \ B) :

This rule is true whether or notA andB are disjoint.

4.1.3. Finite Probability Models. Here is a nice situation in which we can easily cal-
culate a lot of probabilities fairly easily: if the sample spaceS of some experiment is�nite .

So let's suppose the sample space consists of just the outcomesS = f o1; o2; : : : ; ong.
For each of the outcomes, we can compute the probability:

p1 = P(f o1g)

p2 = P(f o2g)

...

pn = P(f ong)

Let's think about what the rules for probability models tellus about these numbersp1; p2; : : : ; pn .
First of all, since they are each the probability of an event,we see that

0 � p1 � 1

0 � p2 � 1

...

0 � pn � 1

Furthermore, sinceS = f o1; o2; : : : ; ong = f o1g [ f o2g [ � � � [ f ong and all of the events
f o1g; f o2g; : : : ; f ong are disjoint, by the addition rule for disjoint events we have

1 = P(S) = P(f o1; o2; : : : ; ong)

= P(f o1g [ f o2g [ � � � [ f ong)

= P(f o1g) + P(f o2g) + � � � + P(f ong)

= p1 + p2 + � � � + pn :
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The �nal thing to notice about this situation of a �nite sample space is that ifE � S is
any event, thenE will be just a collection of some of the outcomes fromf o1; o2; : : : ; ong
(maybe none, maybe all, maybe an intermediate number). Since, again, the events like
f o1g andf o2g and so on are disjoint, we can compute

P(E) = P(f the outcomesoj which make upEg)

=
X

f thepj 's for the outcomes inEg :

In other words

FACT 4.1.17. A probability model on a sample spaceS with a �nite number,n, of
outcomes, is nothing other than a choice of real numbersp1; p2; : : : ; pn , all in the range
from 0 to 1 and satisfyingp1 + p2 + � � � + pn = 1. For such a choice of numbers, we can
compute the probability of any eventE � S as

P(E) =
X

f thepj 's corresponding to the outcomesoj which make upEg :

EXAMPLE 4.1.18. For the coin �ip of Example 4.1.2, there are only the two outcomes
H andT for which we need to pick two probabilities, call themp andq. In fact, since the
total must be1, we know thatp+ q = 1 or, in other words,q = 1 � p. The the probabilities
for all events (which we listed in Example 4.1.9) are

P(; ) = 0

P(f H g) = p

P(f Tg) = q = 1 � p

P(f H; T g) = p + q = 1

What we've described here is, potentially, abiased coin, since we are not assuming
thatp = q – the probabilities of getting a head and a tail are not assumed to be the same.
The alternative is to assume that we have afair coin, meaning thatp = q. Note that in such
a case, sincep + q = 1, we have2p = 1 and sop = 1=2. That is, the probability of a head
(and, likewise, the probability of a tail) in a single throw of a fair coin is1=2.

EXAMPLE 4.1.19. As in the previous example, we can consider the die ofExam-
ple 4.1.3 to afair die, meaning that the individual face probabilities are all thesame. Since
they must also total to1 (as we saw for all �nite probability models), it follows that

p1 = p2 = p3 = p4 = p5 = p6 = 1=6:

We can then use this basic information and the formula (forP(E)) in Fact 4.1.17 to com-
pute the probability of any event of interest, such as

P(“roll was even”) = P(f 2; 4; 6g) =
1
6

+
1
6

+
1
6

=
3
6

=
1
2

:

We should immortalize these last two examples with a
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DEFINITION 4.1.20. When we are talking about dice, coins, individuals for some task,
or another small, practical, �nite experiment, we use the term fair to indicate that the
probabilities of all individual outcomes are equal (and therefore all equal to the the number
1=n, wheren is the number of outcomes in the sample space). A more technical term for
the same idea isequiprobable, while a more casual term which is often used for this in
very informal settings is “at random” (such as “pick a cardat randomfrom this deck” or
“pick a random patient from the study group to give the new treatment to...”).

EXAMPLE 4.1.21. Suppose we look at the experiment of Example 4.1.4 and add the
information that the two dice we are rolling arefair. This actually isn't quite enough to
�gure out the probabilities, since we also have to assure that the fair rolling of the �rst die
doesn't in any way affect the rolling of the second die. This is technically the requirement
that the two rolls beindependent, but since we won't investigate that carefully untilx4.2,
below, let us instead here simply say that we assume the two rolls are fair and are in fact
completely unin�uenced by anything around them in the worldincluding each other.

What this means is that, in the long run, we would expect the �rst die to show a1
roughly 1

6
th of the time, and in the very long run, the second die would showa 1 roughly

1
6

th of thosetimes. This means that the outcome of the “roll two dice” experiment should be
11with probability 1

36 – and the same reasoning would show that all of the outcomes have
that probability. In other words, this is an equiprobable sample space with36 outcomes
each having probability136. Which in turn enables us to compute any probability we might
like, such as

P(“sum of the two rolls is4”) = P(f 13; 22; 31g)

=
1
36

+
1
36

+
1
36

=
3
36

=
1
12

:
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4.2. Conditional Probability

We have described the whole foundation of the theory of probability as coming from
imperfect knowledge, in the sense that we don't know for sure if an eventA will happen any
particular time we do the experiment but we do know, in the long run, in what fraction of
timesA will happen. Or, at least, we claim that there is some numberP(A) such that after
running the experimentN times, out of whichnA of these times are whenA happened,
P(A) is approximatelynA =N (and this ratio gets closer and closer toP(A) as N gets
bigger and bigger).

But what if we havesomeknowledge? In particular, what happens if we know for sure
that the eventB has happened – will that in�uence our knowledge of whetherA happens
or not? As before, when there is randomness involved, we cannot tell for sure ifA will
happen, but we hope that, given the knowledge thatB happened, we can make a more
accurate guess about the probability ofA.

EXAMPLE 4.2.1. If you pick a person at random in a certain country on a particular
date, you might be able to estimate the probability that the person had a certain height if
you knew enough about the range of heights of the whole population of that country. [In
fact, below we will make estimates of this kind.] That is, if we de�ne the event

A = “the random person is taller than1:829meters (6 feet)”

then we might estimateP(A).
But consider the event

B = “the random person's parents were both taller than1:829meters”:

Because there is a genetic component to height, if you know that B happened, it would
change your idea of how likely, given that knowledge, thatA happened. Because genetics
are not the only thing which determines a person's height, you would not be certain thatA
happened, even given the knowledge ofB .

Let us use the frequentist approach to derive a formula for this kind ofprobability ofA
given thatB is known to have happened. So think about doing the repeatable experiment
many times, sayN times. Out of all those times, some timesB happens, say it happensnB

times. Out ofthosetimes, the ones whereB happened, sometimesA also happened. These
are the cases where bothA andB happened – or, converting this to a more mathematical
descriptions, the times thatA \ B happened – so we will write itnA\ B .

We know that the probability ofA happening in the cases where we know for sure that
B happened is approximatelynA\ B =nB . Let's do that favorite trick of multiplying and
dividing by the same number, so �nding that the probability in which we are interested is
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approximately

nA\ B

nB
=

nA\ B � N
N � nB

=
nA\ B

N
�

N
nB

=
nA\ B

N

,
nB

N
� P(A \ B)

.
P(B)

Which is why we make the

DEFINITION 4.2.2. Theconditional probability of the event A given the eventB is

P(AjB) =
P(A \ B)

P(B)
:

HereP(AjB) is pronouncedthe probability ofA givenB.

Let's do a simple

EXAMPLE 4.2.3. Building off of Example 4.1.19, note that the probability of rolling
a 2 is P(f 2g) = 1 =6 (as is the probability of rolling any other face – it's afair die). But
suppose that you were told that the roll was even, which is theeventf 2; 4; 6g, and asked
for the probability that the roll was a2 given this prior knowledge. The answer would be

P(f 2g j f 2; 4; 6g) =
P(f 2g \ f 2; 4; 6g)

P(f 2; 4; 6g)
=

P(f 2g)
P(f 2; 4; 6g)

=
1=6
1=2

= 1=3 :

In other words, the probability of rolling a2 on a fair die with no other information is1=6,
which the probability of rolling a2 given that we rolled an even number is1=3. So the
probability doubled with the given information.

Sometimes the probability changes even more than merely doubling: the probability
that we rolled a1 with no other knowledge is1=6, while the probability that we rolled a1
given that we rolled an even number is

P(f 1g j f 2; 4; 6g) =
P(f 1g \ f 2; 4; 6g)

P(f 2; 4; 6g)
=

P(; )
P(f 2; 4; 6g)

=
0

1=2
= 0 :

But, actually, sometimes the conditional probability for some event is the same as the
unconditioned probability. In other words, sometimes knowing thatB happened doesn't
change our estimate of the probability ofA at all, they are no really related events, at least
from the point of view of probability. This motivates the

DEFINITION 4.2.4. Two eventsA andB are calledindependentif P(A j B) = P(A).

Plugging the de�ning formula forP(A j B) into the de�nition of independent, it is
easy to see that

FACT 4.2.5. EventsA andB are independent if and only ifP(A \ B) = P(A) � P(B).

EXAMPLE 4.2.6. Still using the situation of Example 4.1.19, we saw inExample 4.2.3
that the eventsf 2g andf 2; 3; 4g are not independent since

P(f 2g) = 1 =6 6= 1=3 = P(f 2g j f 2; 4; 6g)
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nor aref 1g andf 2; 3; 4g, since

P(f 1g) = 1 =6 6= 0 = P(f 1g j f 2; 4; 6g) :

However, look at the eventsf 1; 2g andf 2; 4; 6g:

P(f 1; 2g) = P(f 1g) + P(f 2g) = 1 =6 + 1=6

= 1=3

=
1=6
1=2

=
P(f 1g)

P(f 2; 4; 6g)

=
P(f 1; 2g \ f 2; 4; 6g)

P(f 2; 4; 6g)

= P(f 1; 2g j f 2; 4; 6g)

which means that they are independent!

EXAMPLE 4.2.7. We can now fully explain what was going on in Example 4.1.21. The
two fair dice were supposed to be rolled in a way that the �rst roll had no effect on the
second – this exactly means that the dice were rolledindependently. As we saw, this then
means that each individual outcome of sample spaceS had probability 1

36. But the �rst
roll having any particular value is independent of the second roll having another,e.g., if
A = f 11; 12; 13; 14; 15; 16g is the event in that sample space of getting a1 on the �rst roll
andB = f 14; 24; 34; 44; 54; 64g is the event of getting a4 on the second roll, then events
A andB are independent, as we check by using Fact 4.2.5:

P(A \ B) = P(f 14g)

=
1
36

=
1
6

�
1
6

=
6
36

�
6
36

= P(A) � P(B) :

On the other hand, the event “the sum of the rolls is4,” which is C = f 13; 22; 31g as a
set,is not independentof the value of the �rst roll, sinceP(A \ C) = P(f 13g) = 1

36 but
P(A) � P(C) = 6

36 � 3
36 = 1

6 � 1
12 = 1

72.



4.3. RANDOM VARIABLES 69

4.3. Random Variables

4.3.1. De�nition and First Examples. Suppose we are doing a random experiment
and there is some consequence of the result in which we are interested that can be measured
by a number. The experiment might be playing a game of chance and the result could be
how much you win or lose depending upon the outcome, or the experiment could be which
part of the drives' manual you randomly choose to study and the result how many points
we get on the driver's license test we make the next day, or theexperiment might be giving
a new drug to a random patient in medical study and the result would be some medical
measurement you make after treatment (blood pressure, white blood cell count, whatever),
etc.There is a name for this situation in mathematics

DEFINITION 4.3.1. A choice of a number for each outcome of a random experiment is
called arandom variable [RV]. If the values an RV takes can be counted, because they
are either �nite or countably in�nite1 in number, the RV is calleddiscrete; if, instead, the
RV takes on all the values in an interval of real numbers, the RV is calledcontinuous.

We usually use capital letters to denote RVs and the corresponding lowercase letter to
indicate a particular numerical value the RV might have, likeX andx.

EXAMPLE 4.3.2. Suppose we play a silly game where you pay me $5 to play,then I �ip
a fair coin and I give you $10 if the coin comes up heads and $0 ifit comes up tails. Then
your net winnings, which would be +$5 or -$5 each time you play, are a random variable.
Having only two possible values, this RV is certainly discrete.

EXAMPLE 4.3.3. Weather phenomena vary so much, due to such small effects – such
as the famous butter�y �apping its wings in the Amazon rain forest causing a hurricane in
North America – that they appear to be a random phenomenon. Therefore, observing the
temperature at some weather station is a continuous random variable whose value can be
any real number in some range like� 100to 100(we're doingscience, so we use� C).

EXAMPLE 4.3.4. Suppose we look at the “roll two fair dice independently” experiment
from Example 4.2.7 and Example 4.1.21, which was based on theprobability model in
Example 4.1.21 and sample space in Example 4.1.4. Let us consider in this situation the
random variableX whose value for some pair of dice rolls is the sum of the two numbers
showing on the dice. So, for example,X (11) = 2, X (12) = 3, etc.

1There many kinds of in�nity in mathematics – in fact, an in�nite number of them. The smallest is an

in�nity that can be counted, like the whole numbers. But thenthere are many larger in�nities, describing sets
that are too big even to be counted, like the set of all real numbers.



70 4. PROBABILITY THEORY

In fact, let's make a table of all the values ofX :

X (11) = 2

X (21) = X (12) = 3

X (31) = X (22) = X (13) = 4

X (41) = X (32) = X (23) = X (14) = 5

X (51) = X (42) = X (33) = X (24) = X (15) = 6

X (61) = X (52) = X (43) = X (34) = X (25) = X (16) = 7

X (62) = X (53) = X (44) = X (35) = X (26) = 8

X (63) = X (54) = X (45) = X (36) = 9

X (64) = X (55) = X (46) = 10

X (65) = X (56) = 11

X (66) = 12

4.3.2. Distributions for Discrete RVs. The �rst thing we do with a random variable,
usually, is talk about the probabilities associate with it.

DEFINITION 4.3.5. Given a discrete RVX , its distribution is a list of all of the values
X takes on, together with the probability of it taking that value.

[Note this is quite similar to De�nition 1.3.5 – because it isessentially the same thing.]

EXAMPLE 4.3.6. Let's look at the RV, which we will callX , in the silly betting game
of Example 4.3.2. As we noticed when we �rst de�ned that game,there are two possible
values for this RV, $5 and -$5. We can actually think of “X = 5” as describing an event,
consisting of the set of all outcomes of the coin-�ipping experiment which give you a net
gain of $5. Likewise, “X = � 5” describes the event consisting of the set of all outcomes
which give you a net gain of -$5. These events are as follows:

x
Set of outcomeso

such thatX (o) = x
5 f H g

� 5 f Tg

Since it is a fair coin so the probabilities of these events are known (and very simple), we
conclude that the distribution of this RV is the table

x P(X = x)
5 1=2

� 5 1=2
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EXAMPLE 4.3.7. What about theX = ”sum of the face values” RV on the “roll two fair
dice, independently” random experiment from Example 4.3.4? We have actually already
done most of the work, �nding out what values the RV can take and which outcomes cause
each of those values. To summarize what we found:

x
Set of outcomeso

such thatX (o) = x
2 f 11g
3 f 21; 12g
4 f 31; 22; 13g
5 f 41; 32; 23; 14g
6 f 51; 42; 33; 24; 15g
7 f 61; 52; 43; 34; 25; 16g
8 f 62; 53; 44; 35; 26g
9 f 63; 54; 45; 36g

10 f 64; 55; 46g
11 f 65; 56g
12 f 66g

But we have seen that this is an equiprobable situation, where the probability of any event
A containn outcomes isP(A) = n � 1=36, so we can instantly �ll in the distribution table
for this RV as

x P(X = x)
2 1

36

3 2
36 = 1

18

4 3
36 = 1

12

5 4
36 = 1

6

6 5
36

7 6
36 = 1

6

8 5
36

9 4
36 = 1

6

10 3
36 = 1

12

11 2
36 = 1

18

12 1
36

One thing to notice about distributions is that if we make a preliminary table, as we just
did, of the events consisting of all outcomes which give a particular value when plugged
into the RV, then we will have a collection of disjoint eventswhich exhausts all of the sam-
ple space. What this means is that the sum of the probability values in the distribution table
of an RV is the probability of the whole sample space of that RV's experiment. Therefore
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FACT 4.3.8. The sum of the probabilities in a distribution table for a random variable
must always equal1.

It is quite a good idea, whenever you write down a distribution, to check that this Fact
is true in your distribution table, simply as a sanity check against simple arithmetic errors.

4.3.3. Expectation for Discrete RVs.Since we cannot predict what exactly will be
the outcome each time we perform a random experiment, we cannot predict with precision
what will be the value of an RV on that experiment, each time. But, as we did with the basic
idea of probability, maybe we can at least learn something from the long-term trends. It
turns out that it is relatively easy to �gure out the mean value of an RV over a large number
of runs of the experiment.

Say X is a discrete RV, for which the distribution tells us thatX takes the values
x1; : : : ; xn , each with corresponding probabilityp1; : : : ; pn . Then the frequentist view of
probability says that the probabilitypi thatX = x i is (approximately)ni =N, whereni is
the number of timesX = x i out of a large numberN of runs of the experiment. But if

pi = ni =N

then, multiplying both sides byN ,

ni = pi N :

That means that, out of theN runs of the experiment,X will have the valuex1 in p1 N
runs, the valuex2 in p2 N runs,etc.So the sum ofX over thoseN runs will be

(p1 N )x1 + ( p2 N )x2 + � � � + ( pn N )xn :

Therefore the mean value ofX over theseN runs will be the total divided byN , which is
p1 x1 + � � � + pnxn . This motivates the de�nition

DEFINITION 4.3.9. Given a discrete RVX which takes on the valuesx1; : : : ; xn with
probabilitiesp1; : : : ; pn , theexpectation[sometimes also called theexpected value] of X
is the value

E(X ) =
X

pi x i :

By what we saw just before this de�nition, we have the following

FACT 4.3.10. The expectation of a discrete RV is the mean of its values over many runs
of the experiment.

Note: The attentive reader will have noticed that we dealt above only with the case of
a �nite RV, not the case of a countably in�nite one. It turns out that all of the above works
quite well in that more complex case as well, so long as one is comfortable with a bit of
mathematical technology called “summing an in�nite series.” We do not assume such a
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comfort level in our readers at this time, so we shall pass over the details of expectations of
in�nite, discrete RVs.

EXAMPLE 4.3.11. Let's compute the expectation of net pro�t RVX in the silly bet-
ting game of Example 4.3.2, whose distribution we computed in Example 4.3.6. Plugging
straight into the de�nition, we see

E(X ) =
X

pi x i =
1
2

� 5 +
1
2

� (� 5) = 2:5 � 2:5 = 0 :

In other words, your average net gain playing this silly gamemany times will bezero. Note
that does not mean anything like “if you lose enough times in a row, the chances of starting
to win again will go up,” as many gamblers seem to believe, it just means that, in thevery
long run, we can expect the average winnings to be approximately zero – but no one knows
how long that run has to be before the balancing of wins and losses happens2.

A more interesting example is

EXAMPLE 4.3.12. In Example 4.3.7 we computed the distribution of therandom vari-
ableX = “sum of the face values” on the “roll two fair dice, independently” random ex-
periment from Example 4.3.4. It is therefore easy to plug thevalues of the probabilities and
RV values from the distribution table into the formula for expectation, to get

E(X ) =
X

pi x i

=
1
36

� 2 +
2
36

� 3 +
3
36

� 4 +
4
36

� 5 +
5
36

� 6 +
6
36

� 7 +
5
36

� 8 +
4
36

� 9 +
3
36

� 10

+
2
36

� 11 +
1
36

� 12

=
2 � 1 + 3 � 2 + 4 � 3 + 5 � 4 + 6 � 5 + 7 � 6 + 8 � 5 + 9 � 4 + 10 � 3 + 11 � 2 + 12 � 1

36
= 7

So if you roll two fair dice independently and add the numberswhich come up, then do this
process many times and take the average, in the long run that average will be the value7.

4.3.4. Density Functions for Continuous RVs.What about continuous random vari-
ables? De�nition 4.3.5 ofdistributionexplicitly excluded the case of continuous RVs, so
does that mean we cannot do probability calculations in thatcase?

There is, when we think about it, something of a problem here.A distribution is sup-
posed to be a list of possible values of the RV and the probability of each such value. But
if some continuous RV has values which are an interval of realnumbers, there is just no
way to list all such numbers – it has been known since the late 1800s that there is no way to
make a list like that (see [Wik17a], for a description of a very pretty proof of this fact). In

2In fact, in a very precise sense which we will not discuss in this book, the longer you play a game like
this, the more you can expect there will be short-term, but very large, wins and losses.
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addition, the chance of some random process producing a realnumber that isexactlyequal
to some particular value really is zero: for two real numbersto be precisely equal requires
in�nite accuracy ... think of all of those decimal digits, marching off in orderly rows to
in�nity, which must match between the two numbers.

Rather than a distribution, we do the following:

DEFINITION 4.3.13. LetX be a continuous random variable whose values are the real
interval[xmin ; xmax ], where eitherxmin orxmax or both may be1 . A [probability ] density
function for X is a functionf (x) de�ned for x in [xmin ; xmax ], meaning it is a curve with
oney value for eachx in that interval, with the property that

P(a < X < b ) =

(
the area in thexy-plane above thex-axis, below

the curvey = f (x) and betweenx = a andx = b.
:

Graphically, what is going on here is

Because of what we know about probabilities, the following is true (and fairly easy to
prove):

FACT 4.3.14. Supposef (x) is a density function for the continuous RVX de�ned on
the real interval[xmin ; xmax ]. Then

� For all x in [xmin ; xmax ], f (x) � 0.
� The total area under the curvey = f (x), above thex-axis, and betweenx = xmin

andx = xmax is 1.

If we want the idea ofpicking a real number on the interval[xmin ; xmax ] at random,
whereat randommeans that all numbers have the same chance of being picked (along the
lines offair in De�nition 4.1.20, the height of the density function mustbe the same at all
x. In other words, the density functionf (x) must be a constantc. In fact, because of the
above Fact 4.3.14, that constant must have the value1xmax � xmin

. There is a name for this:
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DEFINITION 4.3.15. Theuniform distribution on [xmin ; xmax ] is the distribution for
the continuous RV whose values are the interval[xmin ; xmax ] and whose density function
is the constant functionf (x) = 1

xmax � xmin
.

EXAMPLE 4.3.16. Suppose you take a bus to school every day and becauseof a chaotic
home life (and, let's face it, you don't like mornings), you get to the bus stop at a pretty
nearly perfectly random time. The bus also doesn't stick perfectly to its schedule – but it
is guaranteed to come at least every30minutes. What this adds up to is the idea that your
waiting time at the bus stop is a uniformly distributed RV on the interval[0; 30].

If you wonder one morning how likely it then is that you will wait for less than10
minutes, you can simply compute the area of the rectangle whose base is the interval[0; 10]
on thex-axis and whose height is130, which will be

P(0 < X < 10) = base� height= 10 �
1
30

=
1
3

:

A picture which should clarify this is

where the area of the shaded region represents the probability of having a waiting time
from 0 to 10minutes.

One technical thing that can be confusing about continuous RVs and their density func-
tions is the question of whether we should writeP(a < X < b ) or P(a � X � b). But if
you think about it, we really have three possible events here:

A = f outcomes such thatX = ag;

M = f outcomes such thata < X < b g; and

B = f outcomes such thatX = bg :

SinceX always takes on exactly one value for any particular outcome, there is no overlap
between these events: they are all disjoint. That means that

P(A [ M [ B) = P(A) + P(M ) + P(B) = P(M )

where the last equality is because, as we said above, the probability of a continuous RV
taking on exactly one particular value, as it would in eventsA andB, is 0. The same would
be true if we added merely one endpoint of the interval(a; b). To summarize:



76 4. PROBABILITY THEORY

FACT 4.3.17. If X is a continuous RV with values forming the interval[xmin ; xmax ]
anda andbare in this interval, then

P(a < X < b ) = P(a < X � b) = P(a � X < b ) = P(a � X � b) :

As a consequence of this fact, some authors write probability formulæ about continuous
RVs with “ < ” and some with “� ” and it makes no difference.

Let's do a slightly more interesting example than the uniform distribution:

EXAMPLE 4.3.18. Suppose you repeatedly throw darts at a dartboard. You're not a
machine, so the darts hit in different places every time and you think of this as a repeatable
random experiment whose outcomes are the locations of the dart on the board. You're
interested in the probabilities of getting close to the center of the board, so you decide for
each experimental outcome (location of a dart you threw) to measure its distance to the
center – this will be your RVX .

Being good at this game, you hit near the center more than nearthe edge and you never
completely miss the board, whose radius is10cm– soX is more likely to be near0 than
near10, and it is never greater than10. What this means is that the RV has values forming
the interval[0; 10] and the density function, de�ned on the same interval, should have its
maximum value atx = 0 and should go down to the value0 whenx = 10.

You decide to model this situation with the simplest densityfunction you can think of
that has the properties we just noticed: a straight line fromthe highest point of the density
function whenx = 0 down to the point(10; 0). The �gure that will result will be a triangle,
and since the total area must be1 and the base is10units long, the height must be:2 units.
[To get that, we solved the equation1 = 1

2bh = 1
210h = 5h for h.] So the graph must be

and the equation of this linear density function would bey = � 1
50x + :2 [why? – think

about the slope andy-intercept!].
To the extent that you trust this model, you can now calculatethe probabilities of events

like, for example, “hitting the board within that center bull's-eye of radius1:5cm,” which
probability would be the area of the shaded region in this graph:
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The upper-right corner of this shaded region is atx-coordinate1:5 and is on the line, so its
y-coordinate is� 1

501:5 + :2 = :17 . Since the region is a trapezoid, its area is the distance
between the two parallel sides times the average of the lengths of the other two sides, giving

P(0 < X < 1:5) = 1:5 �
:2 + :17

2
= :2775:

In other words, the probability of hitting the bull's-eye, assuming this model of your dart-
throwing prowess, is about28%.

If you don't remember the formula for the area of a trapezoid,you can do this problem
another way: compute the probability of the complementary event, and then take one minus
that number. The reason to do this would be that the complementary event corresponds to
the shaded region here

which is a triangle! Since we surely do remember the formula for the area of a triangle, we
�nd that

P(1:5 < X < 10) =
1
2

bh =
1
2

:17� 8:5 = :7225

and thereforeP(0 < X < 1:5) = 1 � P(1:5 < X < 10) = 1 � :7225 = :2775. [It's nice
that we got the same number this way, too!]

4.3.5. The Normal Distribution. We've seen some examples of continuous RVs, but
we have yet to meet the most important one of all.

DEFINITION 4.3.19. TheNormal distribution with mean � X and standard deviation
� X is the continuous RV which takes on all real values and is governed by the probability
density function

� (x) =
1

p
2� X

2�
e

� ( x � � X ) 2

2� X
2 :
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If X is a random variable which follows this distribution, then we say thatX is Normally
distributed with mean � X and standard deviation� X or, in symbols,X is N (� X ; � X ).

[More technical works also call this theGaussian distribution, named after the great
mathematicianCarl Friedrich Gauss. But we will not use that term again in this book after
this sentence ends.]

The good news about this complicated formula is that we don'treally have to do any-
thing with it. We will collect some properties of the Normal distribution which have been
derived from this formula, but these properties are useful enough, and other tools such as
modern calculators and computers which can �nd speci�c areas we need under the graph
of y = � (x), that we won't need to work directly with the above formula for � (x) again.
It is nice to know thatN (� X ; � X ) does correspond to a speci�c, known density function,
though, isn't it?

It helps to start with an image of what the Normal distribution looks like. Here is the
density function for� X = 17 and� X = 3:

Now let's collect some of these useful facts about the Normaldistributions.

FACT 4.3.20. The density function� for the Normal distributionN (� X ; � X ) is a positive
function for all values ofx and the total area under the curvey = � (x) is 1.

This simply means that� is a good candidate for the probability density function for
some continuous RV.

FACT 4.3.21. The density function� for the Normal distributionN (� X ; � X ) is unimodal
with maximum atx-coordinate� X .
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This means thatN (� X ; � X ) is a possible model for an RVX which tends to have one
main, central value, and less often has other values fartheraway. That center is at the
location given by the parameter� X , so wherever we want to put the center of our model for
X , we just use that for� X .

FACT 4.3.22. The density function� for the Normal distributionN (� X ; � X ) is is sym-
metric when re�ected across the linex = � X .

This means that the amountX misses its center,� X , tends to be about the same when it
misses above� X and when it misses below� X . This would correspond to situations were
you hit as much to the right as to the left of the center of a dartboard. Or when randomly
picked people are as likely to be taller than the average height as they are to be shorter. Or
when the time it takes a student to �nish a standardized test is as likely to be less than the
average as it is to be more than the average. Or in many, many other useful situations.

FACT 4.3.23. The density function� for the Normal distributionN (� X ; � X ) has has
tails in both directions which are quite thin, in fact get extremely thin asx ! �1 , but
never go all the way to0.

This means thatN (� X ; � X ) models situations where the amountX deviates from its
average has no particular cut-off in the positive or negative direction. So you are throwing
darts at a dart board, for example, and there is no way to know how far your dart may hit to
the right or left of the center, maybe even way off the board and down the hall – although
that may be very unlikely. Or perhaps the time it takes to complete some task is usually a
certain amount, but every once and a while it might take much more time, so much more
that there is really no natural limit you might know ahead of time.

At the same time, those tails of the Normal distribution are so thin, for values far away
from � X , that it can be a good model even for a situation where there isa natural limit to
the values ofX above or below� X . For example, heights of adult males (in inches) in the
United States are fairly well approximated byN (69; 2:8), even though heights can never
be less than0 andN (69; 2:8) has an in�nitely long tail to the left – because while that tail
is non-zero all the way asx ! �1 , it is very, very thin.

All of the above Facts are clearly true on the �rst graph we sawof a Normal distribution
density function.

FACT 4.3.24. The graph of the density function� for the Normal distributionN (� X ; � X )
has a taller and narrower peak if� X is smaller, and a lower and wider peak if� X is larger.

This allows the statistician to adjust how much variation there typically is in a normally
distributed RV: By making� X small, we are saying that an RVX which isN (� X ; � X ) is
very likely to have values quite close to its center,� X . If we make� X large, however,X
is more likely to have values all over the place – still, centered at� X , but more likely to
wander farther away.
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Let's make a few versions of the graph we saw for� when� X was17and� X was3, but
now with different values of� X . First, if � X = 1, we get

If, instead,� X = 5, then we get

Finally, let's superimpose all of the above density functions on each other, for one,
combined graph:
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This variety of Normal distributions (one for each� X and� X ) is a bit bewildering, so
traditionally, we concentrate on one particularly nice one.

DEFINITION 4.3.25. The Normal distribution with mean� X = 0 and standard deviation
� X = 1 is called thestandard Normal distribution and an RV [often written with the
variableZ ] that isN (0; 1) is described as astandard Normal RV.

Here is what the standard Normal probability density function looks like:
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One nice thing about the standard Normal is that all other Normal distributions can be
related to the standard.

FACT 4.3.26. IfX is N (� X ; � X ), thenZ = ( X � � X )=�X is standard Normal.

This has a name.

DEFINITION 4.3.27. The process of replacing a random variableX which isN (� X ; � X )
with the standard normal RVZ = ( X � � X )=�X is calledstandardizing a Normal RV.

It used to be that standardization was an important step in solving problems with Nor-
mal RVs. A problem would be posed with information about somedata that was modelled
by a Normal RV with given mean� X and standardization� X . Then questions about proba-
bilities for that data could be answered by standardizing the RV and looking up values in a
single table of areas under the standard Normal curve.

Today, with electronic tools such as statistical calculators and computers, the standard-
ization step is not really necessary.

EXAMPLE 4.3.28. As we noted above, the heights of adult men in the United States,
when measured in inches, give a RVX which is N (69; 2:8). What percentage of the
population, then, is taller than6 feet?

First of all, the frequentist point of view on probability tells us that what we are inter-
ested in is the probability that a randomly chosen adult American male will be taller than
6 feet – that will be the same as the percentage of the population this tall. In other words,
we must �nd the probability thatX > 72, since in inches,6 feet becomes72. As X is a
continuous RV, we must �nd the area under its density curve, which is the� for N (69; 2:8),
between72and1 .

That 1 is a little intimidating, but since the tails of the Normal distribution are very
thin, we can stop measuring area whenx is some large number and we will have missed
only a very tiny amount of area, so we will have a very good approximation. Let's therefore
�nd the area under� from x = 72 up tox = 1000. This can be done in many ways:

� With a wide array of online tools – just search for “online normal probability
calculator.” One of these yields the value:142.

� With aTI-8x calculator, by typing

normalcdf(72, 1000, 69, 2.8)

which yields the value:1419884174. The general syntax here is

normalcdf(a, b, � X , � X )

to �nd P(a < X < b ) whenX is N (� X ; � X ). Note you getnormalcdf by typing

2ND ! V ARS ! 2
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� Spreadsheets likeLibreOf�ce Calc andMicrosoft Excel will compute this by
putting the following in a cell

=1-NORM.DIST(72, 69, 2.8, 1)

giving the value 0.1419883859. Here we are using the command

NORM.DIST(b, � X , � X , 1)

which computes the area under the density function forN (� X ; � X ) from �1 to b.
[The last input of “1” toNORM.DISTjust tells it that we want to compute the area
under the curve. If we used “0” instead, it would simple tell us the particular value
of � (b), which is of very direct little use in probability calculations.] Therefore,
by doing1 � NORM:DIST (72; 69; 2:8; 1), we are taking the total area of 1 and
subtracting the area to the left of 72, yielding the area to the right, as we wanted.

Therefore, if you want the area betweena andbon anN (� X ; � X ) RV using a
spreadsheet, you would put

=NORM.DIST(b, � X , � X , 1) - NORM.DIST( a, � X , � X , 1)

in a cell.

While standardizing a non-standard Normal RV and then looking up values in a table
is an old-fashioned method that is tedious and no longer really needed, one old technique
still comes in handy some times. It is based on the following:

FACT 4.3.29. The 68-95-99.7 Rule: Let X be anN (� X ; � X ) RV. Then some special
values of the area under the graph of the density curve� for X are nice to know:

� The area under the graph of� from x = � X � � X to x = � X + � X , also known as
P(� X � � X < X < � X + � X ), is .68.

� The area under the graph of� from x = � X � 2� X to x = � X + 2� X , also known
asP(� X � 2� X < X < � X + 2� X ), is .95.

� The area under the graph of� from x = � X � 3� X to x = � X + 3� X , also known
asP(� X � 3� X < X < � X + 3� X ), is .997.

This is also calledThe Empirical Rule by some authors. Visually3:

3By Dan Kernler - Own work, CC BY-SA 4.0,https://commons.wikimedia.org/w/index.
php?curid=36506025 .
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In order to use the 68-95-99.7 Rule in understanding a particular situation, it is helpful
to keep an eye out for the numbers that it talks about. Therefore, when looking at a problem,
one should notice if the numbers� X + � X , � X � � X , � X + 2� X , � X � 2� X , � X + 3� X , or
� X � 3� X are ever mentioned. If so, perhaps this Rule can help.

EXAMPLE 4.3.30. In Example 4.3.28, we needed to computeP(X > 72) whereX
was known to beN (69; 2:8). Is 72 one of the numbers for which we should be looking,
to use the Rule? Well, it's greater than� X = 69, so we could hope that it was� X + � X ,
� X + 2� X , or � X + 3� X . But values are

� X + � X = 69 + 2 :8 = 71:8;

� X + 2� X = 69 + 5 :6 = 74:6; and

� X + 3� X = 69 + 8 :4 = 77:4;

none of which is what we need.
Well, it is true that72 � 71:8, so we could use that fact and accept that we are only

getting an approximate answer – an odd choice, given the availability of tools which will
give us extremely precise answers, but let's just go with it for a minute.

Let's see, the above Rule tells us that

P(66:2 < X < 71:8) = P(� X � � X < X < � X + � X ) = :68 :

Now since the total area under any density curve is 1,

P(X < 66:2 or X > 71:8) = 1 � P(66:2 < X < 71:8) = 1 � :68 = :32:
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Since the event “X < 66:2” is disjoint from the event “X > 71:8” (X only takes on one
value at a time, so it cannot be simultaneously less than 66.2and greater than 71.8), we can
use the simple rule for addition of probabilities:

:32 = P(X < 66:2 or X > 71:8) = P(X < 66:2) + P(X > 71:8) :

Now, since the density function of the Normal distribution is symmetric around the line
x = � X , the two terms on the right in the above equation are equal, which means that

P(X > 71:8) =
1
2

(P(X < 66:2) + P(X > 71:8)) =
1
2

:32 = :16:

It might help to visualize the symmetry here as the equality of the two shaded areas in the
following graph

Now, using the fact that72 � 71:8, we may say that

P(X > 72) � P(X > 71:8) = :16

which, since we know that in factP(X > 72) = :1419883859, is not a completely terrible
approximation.

EXAMPLE 4.3.31. Let's do one more computation in the context of the heights of adult
American males, as in the immediately above Example 4.3.30,but now one in which the
68-95-99.7 Rule gives a more precise answer.

So say we are asked this time what proportion of adult American men are shorter than
63.4 inches. Why that height, in particular? Well, it's how tall archaeologists have deter-
mined King Tut was in life. [No, that's made up. It's just a good number for this problem.]

Again, looking through the values� X � � X , � X � 2� X , and� X � 3� X , we notice that

63:4 = 69 � 5:6 = � X � 2� X :

Therefore, to answer what fraction of adult American males are shorter than 63.4 inches
amounts to asking what is the value ofP(X < � X � 2� X ).
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What we know about� X � 2� X is that the probability ofX being between those two
values isP(� X � 2� X < X < � X + 2� X ) = :95. As in the previous Example, the
complementary event to “� X � 2� X < X < � X + 2� X ,” which will have probability:05,
consists of two pieces “X < � X � 2� X ” and “X > � X + 2� X ,” which have the same area
by symmetry. Therefore

P(X < 63:4) = P(X < � X � 2� X )

=
1
2

[P(X < � X � 2� X ) + P(X > � X + 2� X )]

=
1
2

P(X < � X � 2� X or X > � X + 2� X ) since they're disjoint

=
1
2

P((� X � 2� X < X < � X + 2� X )c)

=
1
2

[1 � P(� X � 2� X < X < � X + 2� X )] by prob. for complements

=
1
2

:05

= :025

Just the way �nding the particularX values� X � � X , � X � 2� X , and� X � 3� X in a
particular situation would tell us the 68-95-99.7 Rule might be useful, so also would �nding
the probability values:68, :95, 99:7, or their complements:32, :05, or :003, – or even half
of one of those numbers, using the symmetry.

EXAMPLE 4.3.32. Continuing with the scenario of Example 4.3.30, letus now �gure
out what is the height above which there will only be .15% of the population.

Notice that .15%, or the proportion .0015, is not one of the numbers in the 68-95-99.7
Rule, nor is it one of their complements – but it is half of one of the complements, being half
of .003 . Now, .003 is the complementary probability to .997,which was the probability in
the range� X � 3� X . As we have seen already (twice), the complementary area to that in the
region between� X � 3� X consists of two thin tails which are of equal area, each of these
areas being12(1� :997) = :0015. This all means that the beginning of that upper tail, above
which value lies .15% of the population, is theX value� X + 3� X = 68 + 3 � 2:8 = 77:4.

Therefore .15% of adult American males are taller than 77.4 inches.
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Exercises

EXERCISE 4.1. A basketball player shoots four free throws, and you write down the
sequence of hits and misses. Write down the sample space for thinking of this whole thing
as a random experiment.

In another game, a basketball player shoots four free throws, and you write down the
number of baskets she makes. Write down the sample space for this different random
experiment.

EXERCISE 4.2. You take a normal, six-sided die, paint over all the sides, and then
write the letterA on all six sides. You then roll the die. What is the sample space of this
experiment? Also, list all the possible events for this experiment. [Hint: it may help to look
at Example 4.1.9.]

Now you paint it over again, and writeA on half the sides andB on the other half.
Again, say what is the sample space and list all possible events.

One more time you paint over the sides, then writeA on one third of the faces,B on
one third of the other faces, andC on the remaining third. Again, give the sample space
and all events.

Make a conjecture about how many events there will be if the sample space hasn
outcomes in it.

EXERCISE 4.3. Describe a random experiment whose sample space will bethe set of
all points on the (standard, 2-dimensional,xy-) plane.

EXERCISE 4.4. The most common last [family] name in the world seems to be Wang
[or the variant Wong]. Approximately 1.3% of the global population has this last name.

The most common �rst name in the world seems to be Mohammad [orone of several
variants]. Some estimates suggest that perhaps as many as 2%of the global population has
this �rst name.

Can you tell, from the above information, what percentage ofthe world population has
the name “Mohammad Wang?” If so, why and what would it be? If not, why not, and can
you make any guess about what that percentage would be, anyway?

[Hint: think of all the above percentages as probabilities,where the experiment is pick-
ing a random person on Earth and asking their name. Carefullydescribe some events for
this experiment, relevant to this problem, and say what their probabilities are. Tell how
combining events will or will not compute the probability ofthe desired event, correspond-
ing to the desired percentage.]

[Note: don't bet on the numbers given in this problem being too accurate – they might
be, but there is a wide range of published values for them in public information from dif-
ferent sources, so probably they are only a very crude approximation.]
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EXERCISE 4.5. Suppose that when people have kids, the chance of havinga boy or a
girl is the same. Suppose also that the sexes of successive children in the same family are
independent. [Neither of these is exactly true in real life,but let's pretend for this problem.]

The Wang family has two children. If we think of the sexes of these children as the
result of a random experiment, what is the sample space? Notethat we're interested in
birth order as well, so that should be apparent from the sample space.

What are the probabilities of each of the outcomes in your sample space? Why?
Now suppose we know that at least one of the Wang children is a boy. Given this

information, what is the probability that the Wangs have twoboys?
Suppose instead that we know that the Wangs' older child is a boy. What is the proba-

bility, given this different information, that both Wang children are boys?
To solve this, clearly de�ne events in words and with symbols, compute probabilities,

and combine these to get the desired probability. Explain everything you do, of course.

EXERCISE 4.6. Imagine you live on a street with a stop light at both endsof the block.
You watch cars driving down the street and notice which ones have to stop at the1st and/or
2nd light (or none). After counting cars and stops for a year, youhave seen what a very large
number – call itN – of cars did. Now imagine you decide to think about the experiment
“pick a car on this street from the last year at random and notice at which light or lights it
has to stop.”

Let A be the event “the car had to stop at the1st light” and B be the event “the car
had to stop at the2nd light.” What else would you have to count, over your year of data
collection, to estimate the probabilities ofA and ofB? Pick some numbers for all of these
variables and show what the probabilities would then be.

Make a Venn diagram of this situation. Label each of the four connected regions of this
diagram (the countries, if this were a map) with a number from1
 to 4
 , then provide a key
which gives, for each of these numbered regions,both a formula in terms ofA, B , unions,
intersections, and/or complements, and thenalsoa description entirely in words which do
not mentionA or B or set operations at all. Then put a decimal number in each of the
regions indicating the probability of the corresponding event.

Wait – for one of the regions, you can't �ll in the probabilityyet, with the information
you've collected so far. What else would you have had to countover the data-collection
year to estimate this probability? Make up a number and show what the corresponding
probability would then be, and add that number to your Venn diagram.

Finally, using the probabilities you have chosen, are the eventsA andB independent?
Why or why not? Explain in words what this means, in this context.
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EXERCISE 4.7. Here is a table of the prizes for theEnergyCubeLottery:

Prize Odds of winning
$1,000,000 1 in 12,000,000

$50,000 1 in 1,000,000
$100 1 in 10,000
$7 1 in 300
$4 1 in 25

We want to transform the above into the [probability] distribution of a random variableX .
First of all, let's makeX represent thenet gain a Lottery player would have for the

various outcomes of playing – note that the ticket to play costs $2. How would you modify
the above numbers to take into account the ticket costs?

Next, notice that the above table gives winningodds, not probabilities. How will you
compute the probabilities from those odds? Recall that saying something has odds of “1 in
n” means that it tends to happen about once out ofn runs of the experiment. You might
use the wordfrequentistsomewhere in your answer here.

Finally, something is missing from the above table of outcomes. What prize – actu-
ally the most common one! – is missing from the table, and how will you �gure out its
probability?

After giving all of the above explanations, now write down the full, formal, probability
distribution for this “net gain inEnergyCubeLottery plays” random variable,X .

In this problem, some of the numbers are quite small and will disappear entirely if you
round them. So use a calculator or computer to compute everything here and keep as much
accuracy as your device shows for each step of the calculation.

EXERCISE4.8. Continuing with the same scenario as in the previous Exercise 4.7, with
theEnergyCubeLottery: What would be your expectation of the average gain per play of
this Lottery? Explain fully, of course.

So if you were to play every weekday for a school year (so: �ve days a week for the 15
weeks of each semester, two semesters in the year), how much would you expect to win or
lose in total?

Again, use as much accuracy as your computational device has, at every step of these
calculations.

EXERCISE 4.9. Last problem in the situation of the above Exercise 4.7 about theEn-
ergyCubeLottery: Suppose your friend plays the lottery and calls youto tell you that she
won ... but her cell phone runs out of charge in the middle of the call, and you don't know
how much she won. Given the information that she won, what is the probability that she
won more than $1,000?

Continue to use as much numerical accuracy as you can.
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EXERCISE 4.10. Let's make a modi�ed version of Example 4.3.18. You areagain
throwing darts at a dartboard, but you notice that you are very left-handed so your throws
pull to the right much more than they pull to the left. What this means is that it is not a
very good model of your dart throws just to notice how far theyare from the center of the
dartboard, it would be better to notice thex-coordinate of where the dart hits, measuring
(in cm) with the center of the board atx location0. This will be your new choice of RV,
which you will still call X .

You throw repeatedly at the board, measureX , and �nd out that youneverhit more
than10cm to the right of the center, while you are more accurate to the left and never hit
more than5cm in that direction. You do hit the middle (X = 0) the most often, and you
guess that the probability decreases linearly to those edges where you never hit.

Explain why yourX is acontinuousRV, and what its interval[xmin ; xmax ] of values is.
Now sketch the graph of the probability density function forX . [Hint: it will be a

triangle, with one side along the interval of values[xmin ; xmax ] on thex-axis, and its maxi-
mum at the center of the dartboard.]Make sure that you put tick marks and numbers on the
axes, enough so that the coordinates of the corners of the triangular graph can be seen eas-
ily. [Another hint: it is a useful fact that the total area under the graph of any probability
density function is1.]

What is the probability that your next throw will be in the bull's-eye, whose radius,
remember, is1:5cm and which therefore stretches fromx coordinate� 1:5 to x-coordinate
1:5?

EXERCISE 4.11. Here's our last discussion of dartboards [maybe?]: One of the prob-
lems with the probability density function approaches fromExample 4.3.18 and Exer-
cise 4.10 is the assumption that the functions werelinear (at least in pieces). It would
be much more sensible to assume they were morebell-shaped, maybe like the Normal
distribution.

Suppose your friend Mohammad Wang is an excellent dart-player. He throws at a board
and you measure thex-coordinate of where the dart goes, as in Exercise 4.10 with the center
corresponding tox = 0. You notice that his darts are rarely – only 5% of the time in total!
– more than5cm from the center of the board.

Fill in the blanks: “MW's dart hits'x-coordinates are an RVX which is Normally
distributed with mean� X = and standard deviation� X = .” Explain, of course.

How often does MW completely miss the dartboard? Its radius is10cm.
How often does he hit the bull's-eye? Remember its radius is1:5cm, meaning that it

stretches fromx coordinate� 1:5 to x-coordinate1:5.



CHAPTER 5

Bringing Home the Data

In this chapter, we start to get very practical on the matter of tracking down good data
in the wild and bringing it home. This is actually a very largeand important subject – there
are entire courses and books onExperimental Design, Survey Methodology, andResearch
Methodsspecialized for a range of particular disciplines (medicine, psychology, sociology,
criminology, manufacturing reliability,etc.) – so in this book we will only give a broad
introduction to some of the basic issues and approaches.

The �rst component of this introduction will give several ofthe important de�nitions
for experimental design in the most direct, simplest context: collecting sample data in an
attempt to understand a single number about an entire population. As we have mentioned
before, usually a population is too large or simply inaccessible and so to determine an im-
portant feature of a population of interest, a researcher must use the accessible, affordable
data of a sample. If this approach is to work, the sample must be chosen carefully, so as to
avoid the dreadedbias. The basic structure of such studies, the meaning of bias, and some
of the methods to select bias-minimizing samples, are the subject of the �rst section of this
chapter.

It is more complicated to collect data which will give evidence for causality, for a
causal relationship between two variables under study. Butwe are often interested in such
relationships – which drug is a more effective treatment forsome illness, what advertise-
ment will induce more people to buy a particular product, or what public policy leads to the
strongest economy. In order to investigate causal relationships, it is necessary not merely to
observe, but to do an actual experiment; for causal questions about human subjects, the gold
standard is arandomized, placebo-controlled, double-blind experiment, sometimes called
simply arandomized, controlled trial [RCT], which we describe in the second section.

There is something in the randomized, controlled experiment which makes many peo-
ple nervous: those in the control group are not getting what the experimenter likely thinks
is the best treatment. So, even though society as a whole may bene�t from the knowledge
we get through RCTs, it almost seems as if some test subjects are being mistreated. While
the scienti�c research community has come to terms with thisapparent injustice, there
are de�nitely experiments which could go too far and cross animportant ethical lines. In
fact, history has shown that a number of experiments have actually been done which we
now consider to be clearly unethical. It is therefore important to state clearly some ethical

91
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guidelines which future investigations can follow in orderto be con�dent to avoid mistreat-
ment of test subjects. One particular set of such guidelinesfor ethical experimentation on
human subjects is the topic of the third and last section of this chapter.
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5.1. Studies of a Population Parameter

Suppose we are studying some population, and in particular avariable de�ned on that
population. We are typically interested in �nding out the following kind of characteristic
of our population:

DEFINITION 5.1.1. A [population] parameter is a number which is computed by
knowing the values of a variable for every individual in the population.

EXAMPLE 5.1.2. If X is a quantitative variable on some population, the population
mean� X of X is a population parameter – to compute this mean, you need to add together
the values ofX for all of individuals in the population. Likewise, the populationstandard
deviation� X of X is another parameter.

For example, we asserted in Example 4.3.28 that the heights of adult American men are
N (69; 2:8). Both the69and2:8 are population parameters here.

EXAMPLE 5.1.3. If, instead,X were a categorical variable on some population, then
the relative frequency (also called thepopulation proportion ) of some valueA of X – the
fraction of the population that has that value – is another population parameter. After all,
to compute this fraction, you have to look at every single individual in the population, all
N of them, say, and see how many of them, sayNA , make theX take the valueA, then
compute the relative frequencyNA =N.

Sometimes one doesn't have to look at the speci�c individuals and compute that fraction
nA =N to �nd a population proportion. For example, in Example 4.3.28, we found that
14:1988% of adult American men are taller than6 feet, assuming, as stated above, that adult
American men's heights are distributed likeN (69; 2:8) – using, notice, those parameters� X

and� X of the height distribution, for which the entire populationmust have been examined.
What this means is that the relative frequency of the value“yes” for the categorical variable
“is this person taller than6 feet?” is :141988. This relative frequency is also a parameter
of the same population of adult American males.

Parameters must be thought of as �xed numbers, out there in the world, which have
a single, speci�c value. However, they are very hard for researchers to get their hands
on, since to compute a parameter, the variable values for theentire population must be
measured. So while the parameter is a single, �xed value, usually that value isunknown.

What can (and does change) is a value coming from a sample.

DEFINITION 5.1.4. A [sample] statistic is a number which is computed by knowing
the values of a variable for the individuals from only a sample.

EXAMPLE 5.1.5. Clearly, if we have a population and quantitative variableX , then any
time we choose a sample out of that population, we get a samplemean and sample standard
deviationSx , both of which are statistics.
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Similarly, if we instead have a categorical variableY on some population, we take a
sample of sizen out of the population and count how many individuals in the sample – say
nA – have some valueA for their value ofY , then thenA =n is a statistic (which is also
called thesample proportion and frequently denotedbp).

Two different researchers will choose different samples and so will almost certainly
have different values for the statistics they compute, evenif they are using the same formula
for their statistic and are looking at the same population. Likewise, one researcher taking
repeated samples from the same population will probably getdifferent values each time for
the statistics they compute. So we should think of a statistic as an easy, accessible number,
changing with each sample we take, that is merely an estimateof the thing we want, the
parameter, which is one, �xed number out in the world, but hidden from out knowledge.

So while getting sample statistics is practical, we need to be careful that they are good
estimates of the corresponding parameters. Here are some ways to get better estimates of
this kind:

(1) Pick a larger sample.This seems quite obvious, because the larger is the sample,
the closer it is to being the whole population and so the better its approximating
statistics will estimate the parameters of interest. But infact, things are not really
quite so simple. In many very practical situations, it wouldbe completely infeasi-
ble to collect sample data on a sample which was anything morethan a miniscule
part of the population of interest. For example, a national news organization might
want to survey the American population, but it would be entirely prohibitive to get
more than a few thousand sample data values, out of a population of hundreds of
millions – so, on the order of tenths of a percent.

Fortunately, there is a general theorem which tells us that,in the long run, one
particular statistic is a good estimator of one particular parameter:

FACT 5.1.6. The Law of Large Numbers: Let X be a quantitative variable on some
population. Then as the sizes of samples (each made up of individuals chosen randomly
andindependentlyfrom the population) get bigger and bigger, the corresponding sample
meansx get closer and closer to the population mean� X .

(2) Pick a better statistic.It makes sense to use the sample mean as a statistic to
estimate the population mean and the sample proportion to estimate the population
proportion. But it is less clear where the somewhat odd formula for the sample
standard deviation came from – remember, it differs from thepopulation standard
deviation by having ann � 1 in the denominator instead of ann. The reason,
whose proof is too technical to be included here, is that the formula we gave for
SX is a better estimator for� X than would have be the version which simply had
the samen in the denominator.
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In a larger sense, “picking a better statistic” is about getting higher quality
estimates from your sample. Certainly using a statistic with a clever formula is
one way to do that. Another is to make sure that your data is of the highest quality
possible. For example, if you are surveying people for theiropinions, the way
you ask a question can have enormous consequences in how yoursubjects answer:
“Do you support a woman's right to control her own body and herreproduction?”
and“Do you want to protect the lives of unborn children?”are two heavy-handed
approaches to asking a question about abortion. Collectively, the impacts of how
a question is asked are calledwording effects, and are an important topic social
scientists must understand well.

(3) Pick a bettersample.Sample quality is, in many ways, the most important and
hardest issue in this kind of statistical study. What we want, of course, is a sample
for which the statistic(s) we can compute give good approximations for the pa-
rameters in which we are interested. There is a name for this kind of sample, and
one technique which is best able to create these good samples: randomness.

DEFINITION 5.1.7. A sample is said to berepresentativeof its population if the values
of its sample means and sample proportions for all variablesrelevant to the subject of
the research project are good approximations of the corresponding population means and
proportions.

It follows almost by de�nition that a representative sampleis a good one to use in
the process of, as we have described above, using a sample statistic as an estimate of a
population parameter in which you are interested. The question is, of course,how to get a
representative sample.

The answer is that it is extremely hard to build a procedure for choosing samples which
guarantees representative samples, but there is a method – using randomness – which at
least can reduce as much as possible one speci�c kind of problem samples might have.

DEFINITION 5.1.8. Any process in a statistical study which tends to produce results
which aresystematically differentfrom the true values of the population parameters under
investigation is calledbiased. Such a systematic deviation from correct values is called
bias.

The key word in this de�nition issystematically:a process which has a lot of variation
might be annoying to use, it might require the researcher to collect a huge amount of data
to average together, for example, in order for the estimate to settle down on something near
the true value – but it might nevertheless not bebiased. A biased process might have less
variation, might seem to get close to some particular value very quickly, with little data,
but would never give the correct answer, because of the systematic deviation it contained.
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The hard part of �nding bias is to �gure out what might be causing that systematic
deviation in the results. When presented with a sampling method for which we wish to
think about sources of possible bias, we have to get creative.

EXAMPLE 5.1.9. In a democracy, the opinion of citizens about how gooda job their
elected of�cials are doing seems like an interesting measure of the health of that democracy.
At the time of this writing, approximately two months after the inauguration of the45th

president of the United States, the widely respected Galluppolling organization reports
[Gal17] that 56% of the population approve of the job the president is doing and 40%
disapprove. [Presumably,4% were neutral or had no opinion.]

According to the site from which these numbers are taken,

“Gallup tracks daily the percentage of Americans who approve or dis-
approve of the job Donald Trump is doing as president. Daily results
are based on telephone interviews with approximately 1,500national
adults....”

Presumably, Gallup used the sample proportion as an estimator computed with the re-
sponses from their sample of1500adults. So it was a good statistic for the job, and the
sample size is quite respectable, even if not a very large fraction of the entire adult Amer-
ican population, which is presumably the target populationof this study. Gallup has the
reputation for being a quite neutral and careful organization, so we can also hope that the
way they worded their questions did not introduce any bias.

A source of bias that does perhaps cause some concern here is that phrase “telephone
interviews.” It is impossible to do telephone interviews with people who don't have tele-
phones, so there is one part of the population they will miss completely. Presumably, also,
Gallup knew that if they called during normal working days and hours, they would not get
working people at home or even on cell phones. So perhaps theycalled also, or only, in the
evenings and on weekends – but this approach would tend systematically to miss people
who had to work very long and/or late hours.

So we might worry that a strategy of telephone interviews only would be biased against
those who work the longest hours, and those people might tendto have similar political
views. In the end, that would result in a systematic error in this sampling method.

Another potential source of bias is that even when a person isable to answer their
phone, it is their choice to do so: there is little reward in taking the time to answer an
opinion survey, and it is easy simply not to answer or to hang up. It is likely, then, that
only those who have quite strong feelings, either positive or negative, or some other strong
personal or emotional reason to take the time, will have provided complete responses to this
telephone survey. This is potentially distorting, even if we cannot be sure that the effects
are systematically in one direction or the other.
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[Of course, Gallup pollsters have an enormous amount of experience and have presum-
ably thought the above issues through completely and �gure out how to work around it
– but we have no particular reason to be completely con�dent in their results other than
our faith in their reputation, without more details about what work-arounds they used. In
science, doubt is always appropriate.]

One of the issues we just mentioned about the Gallup polling of presidential approval
ratings has its own name:

DEFINITION 5.1.10. A sample selection method that involves any substantial choice of
whether to participate or not suffers from what is calledvoluntary sample bias.

Voluntary sample bias is incredibly common, and yet is such astrong source of bias
that it should be taken as a reason to disregard completely the supposed results of any
study that it affects. Volunteers tend to have strong feelings that drive them to participate,
which can have entirely unpredictable but systematic distorting in�uence on the data they
provide. Web-based opinion surveys, numbers ofthumbs-upor -down or of positive or
negative comments on a social media post, percentages of people who call in to vote for
or against some public statement,etc., etc. – such widely used polling methods produce
nonsensical results which will be instantly rejected by anyone with even a modest statistical
knowledge. Don't fall for them!

We did promise above one technique which can robustly combatbias: randomness.
Since bias is based on asystematicdistortion of data, any method which completely breaks
all systematic processes in, for example, sample selection, will avoid bias. The strongest
such sampling method is as follows.

DEFINITION 5.1.11. Asimple random sample[SRS] is a sample of sizen, say, chosen
from a population by a method which produces all samples of sizen from that population
with equal probability.

It is oddly dif�cult to tell if a particular sample is an SRS. Given just a sample, in
fact, there is no way to tell – one must ask to see the procedurethat had been followed
to make that sample and then check to see if that procedure would produce any subset
of the population, of the same size as the sample, with equal probability. Often, it is
easier to see that a sampling methoddoes notmake SRSs, by �nding some subsets of
the population which have the correct size but which the sampling methodwould never
choose, meaning that they have probability zero of being chosen. That would mean some
subsets of the correct size would have zero probability and others would have a positive
probability, meaning that not all subsets of that size wouldhave the same probability of
being chosen.
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Note also that in an SRS it is not that everyindividualhas the same probability of being
chosen, it must be that everygroup of individuals of the size of the desired samplehas the
same probability of being chosen. These are not the same thing!

EXAMPLE 5.1.12. Suppose that on Noah's Ark, the animals decide they will form an
advisory council consisting of an SRS of 100 animals, to helpNoah and his family run a
tight ship. So a chimpanzee (because it has good hands) puts many small pieces of paper
in a basket, one for each type of animal on the Ark, with the animal's name written on
the paper. Then the chimpanzee shakes the basket well and picks �fty names from the
basket. Both members of the breeding pair of that named type of animal are then put on
the advisory council. Is this an SRS from the entire population of animals on the Ark?

First of all, each animal name has a chance of50=N, whereN is the total number of
types of animals on the Ark, of being chosen. Then both the male and female of that type
of animal are put on the council. In other words, every individual animal has the same
probability –50=N – of being on the council. And yet there are certainly collections of
100animals from the Ark which do not consist of50breeding pairs: for example, take 50
female birds and 50 female mammals; that collection of100animals has no breeding pairs
at all.

Therefore this is a selection method which picks each individual for the sample with
equal probability, butnoteach collection of100animals with the same probability. So it is
not an SRS.

With a computer, it is fairly quick and easy to generate an SRS:

FACT 5.1.13. Suppose we have a population of sizeN out of which we want to pick an
SRS of sizen, wheren < N . Here is one way to do so: assign every individual in the popu-
lation a unique ID number, with sayd digits (maybe student IDs, Social Security numbers,
new numbers from1 to N chosen in any way you like – randomness not needed here, there
is plenty of randomness in the next step). Have a computer generate completely random
d-digit number, one after the other. Each time, pick the individual from the population with
that ID number as a new member of the sample. If the next randomnumber generated by
the computer is a repeat of one seen before, or if it is ad-digit number that doesn't happen
to be any individual's ID number, then simply skip to the nextrandom number from the
computer. Keep going until you haven individuals in your sample.

The sample created in this way will be an SRS.
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5.2. Studies of Causality

If we want to draw conclusions aboutcausality, observations are insuf�cient. This is
because simply seeingB always followA out in the world does not tell us thatA causes
B. For example, maybe they are both caused byZ, which we didn't notice had always
happened before thoseA andB, andA is simply a bit faster thanB, so it seems always to
proceed, even to cause,B. If, on the other hand, we go out in the world and doA and then
always seeB, we would have more convincing evidence thatA causesB.

Therefore, we distinguish two types of statistical studies

DEFINITION 5.2.1. Anobservational study is any statistical study in which the re-
searchers merely look at (measure, talk to,etc.) the individuals in which they are inter-
ested. If, instead, the researchers also change something in the environment of their test
subjects before (and possibly after and during) taking their measurements, then the study
is anexperiment.

EXAMPLE 5.2.2. A simple survey of, for example, opinions of voters about political
candidates, is an observational study. If, as is sometimes done, the subject is told something
like “let me read you a statement about these candidates and then ask you your opinion
again” [this is an example of something calledpush-polling], then the study has become
an experiment.

Note that to be considered an experiment, it is not necessarythat the study use princi-
ples of good experimental design, such as those described inthis chapter, merely that the
researchersdo somethingto their subjects.

EXAMPLE 5.2.3. If I slap my brother, notice him yelp with pain, and triumphantly turn
to you and say “See, slapping hurts!” then I've done an experiment, simply because Idid
something, even if it is a stupid experiment [tiny non-random sample, no comparison,etc.,
etc.].

If I watch you slap someone, who cries out with pain, and then Imake the same tri-
umphant announcement, then I've only done an observationalstudy, since the action taken
was not by me, the “researcher.”

When we do an experiment, we typically impose our intentional change on a number
of test subjects. In this case, no matter the subject of inquiry, we steal a word from the
medical community:

DEFINITION 5.2.4. The thing we do to the test subjects in an experiment iscalled the
treatment.

5.2.1. Control Groups. If we are doing an experiment to try to understand something
in the world, we should not simply do the interesting new treatment to all of our subjects
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and see what happens. In a certain sense, if we did that, we would simply be changing the
whole world (at least the world of all of our test subjects) and then doing an observational
study, which, as we have said, can provide only weak evidenceof causality. To really do
an experiment, we mustcomparetwo treatments.

Therefore any real experiment involves at least two groups.

DEFINITION 5.2.5. In an experiment, the collection of test subjects which gets the new,
interesting treatment is called theexperimental group, while the remaining subjects, who
get some other treatment such as simply the past common practice, are collectively called
thecontrol group.

When we have to put test subjects into one of these two groups,it is very important to
use a selection method which has no bias. The only way to be sure of this is [as discussed
before] to use a random assignment of subjects to the experimental or control group.

5.2.2. Human-Subject Experiments: ThePlacebo Effect. Humans are particularly
hard to study, because their awareness of their environments can have surprising effects on
what they do and even what happens, physically, to their bodies. This is not because people
fake the results: there can be real changes in patients' bodies even when you give them a
medicine which is not physiologically effective, and real changes in their performance on
tests or in athletic events when you merely convince them that they will do better,etc.

DEFINITION 5.2.6. A bene�cial consequence of some treatment which should not di-
rectly [e.g., physiologically] cause an improvement is called thePlacebo Effect. Such
a “fake” treatment, which looks real but has no actual physiological effect, is called a
placebo.

Note that even though the Placebo Effect is based on giving subjects a “fake” treatment,
the effect itselfis not fake. It is due to a complex mind-body connection which really does
change the concrete, objectively measurable situation of the test subjects.

In the early days of research into the Placebo Effect, the pill that doctors would give
as a placebo would look like other pills, but would be made just of sugar (glucose), which
(in those quite small quantities) has essentially no physiological consequences and so is a
sort of neutral dummy pill. We still often call medical placebossugar pills even though
now they are often made of some even more neutral material, like the starch binder which
is used as a matrix containing the active ingredient in regular pills – but without any active
ingredient.

Since the Placebo Effect is a real phenomenon with actual, measurable consequences,
when making an experimental design and choosing the new treatment and the treatment for
the control group, it is important to give the control groupsomething.If they get nothing,
they do not have the bene�cial consequences of the Placebo Effect, so they will not have
as good measurements as the experimental group, even if the experimental treatment had
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no actual useful effect. So we have to equalize for both groups the bene�t provided by the
Placebo Effect, and give them both an treatment which looks about the same (compare pills
to pills, injections to injections, operations to operations, three-hour study sessions in one
format to three-hour sessions in another format,etc.) to the subjects.

DEFINITION 5.2.7. An experiment in which there is a treatment group and acontrol
group, which control group is given a convincing placebo, issaid to beplacebo-controlled.

5.2.3. Blinding. We need one last fundamental tool in experimental design, that of
keeping subjects and experimenters ignorant of which subject is getting which treatment,
experimental or control. If the test subjects are aware of into which group they have been
put, that mind-body connection which causes the Placebo Effect may cause a systematic
difference in their outcomes: this would be the very de�nition of bias. So we don't tell
the patients, and make sure that their control treatment looks just like the real experimental
one.

It also could be a problem if the experimenter knew who was getting which treatment.
Perhaps if the experimenter knew a subject was only getting the placebo, they would be
more compassionate or, alternatively, more dismissive. Ineither case, the systematically
different atmosphere for that group of subjects would againbe a possible cause of bias.

Of course, when we say that the experimenter doesn't know which treatment a partic-
ular patient is getting, we mean that they do not know that at the time of the treatment.
Records must be kept somewhere, and at the end of the experiment, the data is divided
between control and experimental groups to see which was effective.

DEFINITION 5.2.8. When one party is kept ignorant of the treatment beingadminis-
tered in an experiment, we say that the information has beenblinded. If neither subjects
nor experimenters know who gets which treatment until the end of the experiment (when
both must be told, one out of fairness, and one to learn something from the data that was
collected), we say that the experiment wasdouble-blind.

5.2.4. Combining it all: RCTs. This, then is the gold standard for experimental de-
sign: to get reliable, unbiased experimental data which canprovide evidence of causality,
the design must be as follows:

DEFINITION 5.2.9. An experiment which is

� randomized
� placebo-controlled.
� double-blind

is called, for short, arandomized, controlled trial [RCT] (where the “placebo-” and
“double-blind” are assumed even if not stated).
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5.2.5. Confounded Lurking Variables. A couple of last terms in this subject are quite
poetic but also very important.

DEFINITION 5.2.10. Alurking variable is a variable which the experimenter did not
put into their investigation.

So a lurking variable is exactly the thing experimenters most fear: something they
didn't think of, which might or might not affect the study they are doing.

Next is a situation which also could cause problems for learning from experiments.

DEFINITION 5.2.11. Two variables areconfoundedwhen we cannot statistically dis-
tinguish their effects on the results of our experiments.

When we are studying something by collecting data and doing statistics, confounded
variables are a big problem, because we do not know which of them is the real cause of the
phenomenon we are investigating: they are statistically indistinguishable.

The combination of the two above terms is the worst thing for aresearch project: what
if there is a lurking variable (one you didn't think to investigate) which is confounded with
the variable you did study? This would be bad, because then your conclusions would apply
equally well (since the variables are statistically identical in their consequences) to that
thing you didn't think of ... so your results could well be completely misunderstanding
cause and effect.

The problem of confounding with lurking variables is particularly bad with observa-
tional studies. In an experiment, you can intentionally choose your subjects very randomly,
which means that any lurking variables should be randomly distributed with respect to any
lurking variables – but controlled with respect to the variables you are studying – so if the
study �nds a causal relationship in your study variables, incannot be confounded with a
lurking variable.

EXAMPLE 5.2.12. Suppose you want to investigate whether fancy new athletic shoes
make runners faster. If you just do an observational study, you might �nd that those ath-
letes with the new shoes do run faster. But a lurking variablehere could be how rich the
athletes are, and perhaps if you looked at rich and poor athletes they would have the same
relationship to slow and fast times as the new-vs old-shoe wearing athletes. Essentially,
the variablewhat kind of shoe is the athlete wearing(categorical with the two valuesnew
andold) is being confounded with the lurking variablehow wealthy is the athlete. So the
conclusion about causalityfancy new shoes make them run fastermight be false, and in-
stead the real truth might bewealthy athletes, who have lots of support, good coaches, good
nutrition, and time to devote to their sport, run faster.

If, instead, we did an experiment, we would not have this problem. We would select
athletes at random – so some would be wealthy and some not – andgive half of them (the
experimental group) the fancy new shoes and the other half (the control group) the old type.
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If the type of shoe was the real cause of fast running, we wouldsee that in our experimental
outcome. If really it is the lurking variable of the athlete's wealth which matters, then we
would see neither group would do better than the other, sincethey both have a mixture
of wealthy and poor athletes. If the type of shoe really is thecause of fast running, then
we would see a difference between the two groups, even thoughthere were rich and poor
athletes in both groups, since only one group had the fancy new shoes.

In short, experiments are better at giving evidence for causality than observational stud-
ies in large part because an experiment which �nds a causal relationship between two vari-
ables cannot be confounding the causal variable under studywith a lurking variable.
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5.3. Experimental Ethics

Experiments with human subjects are technically hard to do,as we have just seen,
because of things like the Placebo Effect. Even beyond thesedif�culties, they are hard
because human subjects just don't do what we tell them, and seem to want to express their
free will and autonomy.

In fact, history has many (far too many) examples of experiments done on human sub-
jects which did not respect their humanity and autonomy – see, for example, the Wikipedia
page onunethical human experimentation[Wik17b].

The ethical principles for human subject research which we give below are largely
based on the idea of respecting the humanity and autonomy of the test subjects, since the
lack of that respect seems to be the crucial failure of many ofthe generally acknowledged
unethical experiments in history. Therefore the below principles should always be taken as
from the point of view of the test subjects, or as if they were designed to create systems
which protect those subjects. In particular, a utilitariancalculus ofthe greatest good for
the greatest numbermight be appealing to some, but modern philosophers of experimental
ethics generally do not allow the researchers to make that decision themselves. If, for
example, some subjects were willing and chose to experiencesome negative consequences
from being in a study, that might be alright, but it is never tobe left up to the researcher.

5.3.1. “Do No Harm”. The Hippocratic Oath, a version of which is thought in popular
culture to be sworn by all modern doctors, is actually not used much at all today in its
original form. This is actually not that strange, since it sounds quite odd and archaic1 to
modern ears – it begins

I swear by Apollo the physician, and Asclepius, and Hygieia and Panacea
and all the gods and goddesses as my witnesses that...

It also has the odd requirements that physicians not use a knife, and will remain celibate,
etc.

One feature, often thought to be part of the Oath, does not exactly appear in the tra-
ditional text but is probably considered the most importantpromise:First, do no harm
[sometimes seen in the Latin version,primum nil nocere]. This principle is often thought
of as constraining doctors and other care-givers, which is why, for example, theAmerican
Medical Associationforbids doctors from participation in executions, even when they are
legal in certain jurisdictions in the United States.

It does seem like good general idea, in any case, that those who have power and au-
thority over others should, at the very least, not harm them.In the case of human subject
experimentation, this is thought of as meaning that researchers must never knowingly harm
their patients, and must in fact let the patients decide whatthey consider harm to be.

1It dates from the5th century BCE, and is attributed to Hippocrates of Kos [US 12].
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5.3.2. Informed Consent.Continuing with the idea of letting subjects decide what
harms they are willing to experience or risk, one of the most important ethical principles
for human subject research is that test subjects must be asked for informed consent. What
this means is that they must be informed of all of the possibleconsequences, positive and
(most importantly) negative, of participation in the study, and then given the right to decide
if they want to participate. The information part does not have to tell every detail of the
experimental design, but it must give every possible consequence that the researchers can
imagine.

It is important when thinking aboutinformed consentto make sure that the subjects
really have the ability to exercise fully free will in their decision to give consent. If, for
example, participation in the experiment is the only way to get some good (health care,
monetary compensation in a poor neighborhood, a good grade in a class, advancement in
their job,etc.) which they really need or want, the situation itself may deprive them of their
ability freely to sayno– and thereforeyes, freely.

5.3.3. Con�dentiality. The Hippocratic Oath does also require healers to protect the
privacy of their patients. Continuing with the theme of protecting the autonomy of test
subjects, then, it is considered to be entirely the choice ofsubject when and how much
information about their participation in the experiment will be made public.

The kinds of information protected here run from, of course,the subjects' performance
in the experimental activities, all the way to the simple fact of participation itself. There-
fore, ethical experimenters must make it possible for subject to sign up for and then do all
parts of the experiment without anyone outside the researchteam knowing this fact, should
the subject want this kind of privacy.

As a practical matter, something must be revealed about the experimental outcomes
in order for the scienti�c community to be able to learn something from that experiment.
Typically this public information will consist of measureslike sample means and other
data which areaggregatedfrom many test subjects' results. Therefore, even if it were
know what the mean was and that a person participated in the study, the public would not
be able to �gure out what that person's particular result was.

If the researchers want to give more precise information about one particular test sub-
ject's experiences, or about the experiences of a small enough number of subjects that indi-
vidual results could bedisaggregatedfrom what was published, then the subjects' identities
must be hidden, oranonymized. This is done by removing from scienti�c reports allper-
sonally identi�able information [PII] such as name, social security or other ID number,
address, phone number, email address,etc.

5.3.4. External Oversight [IRB]. One last way to protect test subjects and their au-
tonomy which is required in ethical human subject experimentation is to give some other,
disinterested, external group as much power and information as the researchers themselves.
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In the US, this is done by requiring all human subject experimentation to get approval
from a group of trained and independent observers, called theInstitutional Review Board
[IRB] before the start of the experiment. The IRB is given a complete description of all
details of the experimental design and then chooses whetheror not to give its approval.
In cases when the experiment continues for a long period of time (such as more than one
year), progress reports must be given to the IRB and its re-approval sought.

Note that the way this IRB requirement is enforced in the US isby requiring approval
by a recognized IRB for experimentation by any organizationwhich wants ever to receive
US Federal Government monies, in the form of research grants, government contracts, or
even student support in schools. IRBs tend to be very strict about following rules, and if the
ever see a violation at some such organization, that organization will quickly get excluded
from federal funds for a very long time. As a consequence, alluniversities, NGOs, and
research institutes in the US, and even many private organizations or companies, are very
careful about proper use of IRBs.



EXERCISES 107

Exercises

EXERCISE 5.1. In practice,wording effectsare often an extremely strong in�uence
on the answers people give when surveyed. So... Suppose you were doing a survey of
American voters opinions of the president. Think of a way of asking a question which
would tend tomaximizethe number of people who said they approved of the job he is
doing. Then think of another way of asking a question which would tend tominimizethat
number [who say they approve of his job performance].

EXERCISE 5.2. Think of a survey question you could ask in a survey of thegeneral
population of Americans in response to which many [most?] people wouldlie. State what
would be the issue you would be investigating with this survey question, as a clearly de-
�ned, formal variableandparameteron the population of all Americans. Also tell exactly
what would be the wording of the question you think would get lying responses.

Now think of a way to do an observational study which would getmore accurate values
for this variable and for the parameter of interest. Explainin detail.

EXERCISE 5.3. Many parents believe that their small children get a bithyperactive
when they eat or drink sweets (candies, sugary sodas,etc.), and so do not let their kids
have such things before nap time, for example. A pediatrician at Euphoria State University
Teaching Hospital [ESUTH] thinks instead that it is the parents' expectations about the
effects of sugar which cause their children to become hyperactive, and not the sugar at all.

Describe a randomized, placebo-controlled, double-blindexperiment which would col-
lect data about this ESUTH pediatrician's hypothesis. Makesure you are clear about both
which part of your experimental procedure addresses each ofthose important components
of good experimental design.

EXERCISE 5.4. Is the experiment you described in the previous exercise an ethical
one? What must the ESUTH pediatrician do before, during, andafter the experiment to
make sure it is ethical? Make sure you discuss (at least) the checklist of ethical guidelines
from this chapter and how each point applies to this particular experiment.





Part 3

Inferential Statistics



We are now ready to make (some) inferences about the real world based on data –
this subject is calledinferential statistics. We have seen how to display and interpret 1-
and 2-variable data. We have seen how to design experiments,particularly experiments
whose results might tell us something about cause and effectin the real world. We even
have some principles to help us do such experimentation ethically, should our subjects be
human beings. Our experimental design principles use randomness (to avoid bias), and we
have even studied the basics of probability theory, which will allow us to draw the best
possible conclusions in the presence of randomness.

What remains to do in this part is to start putting the pieces together. In particular,
we shall be interested in drawing the best possible conclusions about some population
parameter of interest, based on data from a sample. Since we know always to seek simple
random samples (again, to avoid bias), our inferences will be never be completely sure,
instead they will be built on (a little bit of) probability theory.

The basic tools we describe for this inferential statisticsare thecon�dence intervaland
the hypothesis test(also calledtest of signi�cance). In the �rst chapter of this Part, we
start with the easiest cases of these tools, when they are applied to inferences about the
population mean of a quantitative RV. Before we do that, we have to discuss theCentral
Limit Theorem [CLT], which is both crucial to those tools and one of the most powerful
and subtle theorems of statistics.



CHAPTER 6

Basic Inferences

The purpose of this chapter is to introduce two basic but powerful tools of inferential
statistics, thecon�dence intervaland thehypothesis test(also calledtest of signi�cance),
in the simplest case of looking for the population mean of a quantitative RV.

This simple case of these tool is based, for both of them, on a beautiful and amazing
theorem called theCentral Limit Theorem, which is therefore the subject of the �rst section
of the chapter. The following sections then build the ideas and formulæ �rst for con�dence
intervals and then for hypothesis tests.

Throughout this chapter, we assume that we are working with some (large) population
on which there is de�ned a quantitative RVX . The population mean� X is, of course, a
�xed number, out in the world, unchanging but also probably unknown, simply because to
compute it we would have to have access to the values ofX for the entire population.

Strangely, we assume in this chapter that while we do not know� X , we do know the
population standard deviation� X , of X . This is actually quite a silly assumption – how
could we know� X if we didn't already know� X ? But we make this assumption because
if makes this �rst version ofcon�dence intervalsandhypothesis testsparticularly simple.
(Later chapters in this Part will remove this silly assumption.)

Finally, we always assume in this chapter that the samples weuse are simple random
samples, since by now we know that those are the best kind.

111
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6.1. The Central Limit Theorem

Taking the average [mean] of a sample of quantitative data isactually a very nice pro-
cess: the arithmetic is simple, and the average often has thenice property of being closer
to the center of the data than the values themselves being combined or averaged. This is
because while a random sample may have randomly picked a few particularly large (or
particularly small) values from the data, it probably also picked some other small (or large)
values, so that the mean will be in the middle. It turns out that these general observations
of how nice a sample mean can be explained and formalized in a very important Theorem:

FACT 6.1.1. The Central Limit Theorem [CLT ] Suppose we have a large population
on which is de�ned a quantitative random variableX whose population mean is� X and
whose population standard deviation is� X . Fix a whole numbern � 30. As we take
repeated, independent SRSs of sizen, the distribution of the sample meansx of these SRSs
is approximatelyN (� X ; � X =

p
n). That is, the distribution ofx is approximately Normal

with mean� X and standard deviation� X =
p

n.
Furthermore, asn gets bigger, the Normal approximation gets better.

Note that the CLT has several nice pieces. First, it tells us that the middle of the his-
togram of sample means, as we get repeated independent samples, is the same as the mean
of the original population –the mean of the sample means is the population mean. We
might write this as� x = � X .

Second, the CLT tells us precisely how much less variation there is in the sample means
because of the process noted above whereby averages are closer to the middle of some data
than are the data values themselves. The formula is� x = � X =

p
n.

Finally and most amazingly, the CLT actually tells us exactly what is the shape of
the distribution forx – and it turns out to be that complicated formula we gave De�ni-
tion 4.3.19. This is completely unexpected, but somehow theuniverse knows that formula
for the Normal distribution density function and makes it appear when we construct the
histogram of sample means.

Here is an example of how we use the CLT:

EXAMPLE 6.1.2. We have said elsewhere that adult American males' heights in inches
are distributed likeN (69; 2:8). Supposing this is true, let us �gure out what is the proba-
bility that 52 randomly chosen adult American men, lying down in a row with each one's
feet touching the next one's head, stretch the length of a football �eld. [Why 52? Well, an
American football team may have up to 53 people on its active roster, and one of them has
to remain standing to supervise everyone else's formation lying on the �eld....]

First of all, notice that a football �eld is 100 yards long, which is 300 feet or 3600
inches. If every single one of our randomly chosen men was exactly the average height for
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adult men, that would a total of52� 69 = 3588inches, so they would not stretch the whole
length. But there is variation of the heights, so maybe it will happen sometimes....

So imagine we have chosen 52 random adult American men. Measure each of their
heights, and call those numbersx1; x2; : : : ; x52. What we are trying to �gure out is whether
P

x i � 3600. More precisely, we want to know

P
� X

x i � 3600
�

:

Nothing in that looks familiar, but remember that the 52 adult men were chosen randomly.
The best way to choose some number, call itn = 52, of individuals from a population is to
choose an SRS of sizen.

Let's also assume that we did that here. Now, having an SRS, weknow from the CLT
that the sample meanx is N (69; 2:8=

p
52) or, doing the arithmetic,N (69; :38829).

But the question we are considering here doesn't mentionx, you cry! Well, it almost
does:x is the sample mean given by

x =
P

x i

n
=

P
x i

52
:

What that means is that the inequality
X

x i � 3600

amounts to exactly the same thing, by dividing both sides by 52, as the inequality
P

x i

52
�

3600
52

or, in other words,
x � 69:23077:

Since these inequalities all amount to the same thing, they have the same probabilities, so

P
� X

x i � 3600
�

= P (x � 69:23077) :

But rememberx wasN (69; :38829), so we can calculate this probability withLibreOf�ce
Calc or Microsoft Excel as

P (x � 69:23077) = 1� P (x < 69:23077)

= NORM.DIST(69:23077; 69; :38829; 1)

= :72385

where here we �rst use the probability rule for complements to turn around the inequality
into the direction thatNORM.DISTcalculates.

Thus the chance that 52 randomly chosen adult men, lying in one long column, are as
long as a football �eld, is 72.385%.
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6.2. Basic Con�dence Intervals

As elsewhere in this chapter, we assume that we are working with some (large) popula-
tion on which there is de�ned a quantitative RVX . The population mean� X is unknown,
and we want to estimate it. world, unchanging but also probably unknown, simply because
to compute it we would have to have access to the values ofX for the entire population.

We continue also with our strange assumption that while we donot know� X , we do
know the population standard deviation� X , of X .

Our strategy to estimate� X is to take an SRS of sizen, compute the sample meanx of
X , and then to guess that� X � x. But this leaves us wondering how good an approximation
x is of � X .

The strategy we take for this is to �gure how close� X must be tox – or x to � X , it's
the same thing, and in fact to be precise enough to say what is the probability that� X is
a certain distance fromx. That is, if we choose a target probability, call itL , we want to
make an interval of real numbers centered onx with the probability of� X being in that
interval beingL.

Actually, that is not really a sensible thing to ask for: probability, remember, is the
fraction of times something happens in repeated experiments. But we are not repeatedly
choosing� X and seeing if it is in that interval. Just the opposite, in fact: � X is �xed (al-
though unknown to us), and every time we pick a new SRS – that'sthe repeated experiment,
choosing new SRSs! – we can compute a new interval and hope that that new interval might
contain� X . The probabilityL will correspond to what fraction of those newly computed
intervals which contain the (�xed, but unknown)� X .

How to do even this?
Well, the Central Limit Theorem tells us that the distribution of x as we take repeated

SRSs – exactly the repeatable experiment we are imagining doing – is approximately Nor-
mal with mean� X and standard deviation� X =

p
n. By the 68-95-99.7 Rule:

(1) 68% of the time we take samples, the resultingx will be within � X =
p

n units on
the number line of� X . Equivalently (since the distance from A to B is the same
as the distance from B to A!), 68% of the time we take samples,� X will be within
� X =

p
n of x. In other words, 68% of the time we take samples,� X will happen to

lie in the interval fromx � � X =
p

n to x + � X =
p

n.
(2) Likewise, 95% of the time we take samples, the resultingx will be within 2� X =

p
n

units on the number line of� X . Equivalently (since the distance from A to B is
still the same as the distance from B to A!), 95% of the time we take samples,� X

will be within 2� X =
p

n of x. In other words, 95% of the time we take samples,
� X will happen to lie in the interval fromx � 2� X =

p
n to x + 2� X =

p
n.

(3) Likewise, 99.7% of the time we take samples, the resulting x will be within
3� X =

p
n units on the number line of� X . Equivalently (since the distance from A
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to B is still the same as the distance from B to A!), 99.7% of thetime we take sam-
ples,� X will be within 3� X =

p
n of x. In other words, 99.7% of the time we take

samples,� X will happen to lie in the interval fromx � 3� X =
p

n to x + 3� X =
p

n.

Notice the general shape here is that the interval goes fromx � z�
L � X =

p
n to x +

z�
L � X =

p
n, where this numberz�

L has a name:

DEFINITION 6.2.1. Thecritical value z�
L with probability L for the Normal distribu-

tion is the number such that the Normal distributionN (� X ; � X ) has probabilityL between
� X � z�

L � X and� X + z�
L � X .

Note the probabilityL in this de�nition is usually called thecon�dence level.

If you think about it, the 68-95-99.7 Rule is exactly tellingus thatz�
L = 1 if L = :68,

z�
L = 2 if L = :95, andz�

L = 3 if L = :997. It's actually convenient to make a table of
similar values, which can be calculated on a computer from the formula for the Normal
distribution.

FACT 6.2.2. Here is a useful table of critical values for a range ofpossible con�dence
levels:

L .5 .8 .9 .95 .99 .999
z�

L .674 1.282 1.645 1.960 2.576 3.291

Note that, oddly, thez�
L here forL = :95 is not2, but rather1:96! This is actually more

accurate value to use, which you may choose to use, or you may continue to usez�
L = 2

whenL = :95, if you like, out of �delity to the 68-95-99.7 Rule.

Now, using these accurate critical values we can de�ne an interval which tells us where
we expect the value of� X to lie.

DEFINITION 6.2.3. For a probability valueL, called thecon�dence level, the interval
of real numbers fromx � z�

L � X =
p

n to x + z�
L � X =

p
n is called thecon�dence interval for

� X with con�dence level L.

The meaning ofcon�dencehere is quite precise (and a little strange):

FACT 6.2.4. Any particular con�dence interval with con�dence level L might or might
not actually contain the sought-after parameter� X . Rather, what it means to have con�-
dence levelL is that if we take repeated, independent SRSs and compute thecon�dence
interval again for each newx from the new SRSs, then a fraction of sizeL of these new
intervals will contain� X .

Note that any particular con�dence interval might or might not contain� X not because
� X is moving around, but rather the SRSs are different each time, so thex is (potentially)
different, and hence the interval is moving around. The� X is �xed (but unknown), while
the con�dence intervals move.
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Sometimes the piece we add and subtract from thex to make a con�dence interval is
given a name of its own:

DEFINITION 6.2.5. When we write a con�dence interval for the populationmean� X

of some quantitative variableX in the formx � E to x + E, whereE = z�
L � X =

p
n, we call

E themargin of error [or, sometimes, thesampling error] of the con�dence interval.

Note that if a con�dence interval is given without a stated con�dence level, particularly
in the popular press, we should assume that the implied levelwas .95 .

6.2.1. Cautions.The thing that most often goes wrong when using con�dence inter-
vals is that the sample data used to compute the sample meanx and then the endpoints
x � E of the interval is not from a good SRS. It is hard to get SRSs, sothis is not unex-
pected. But we nevertheless frequently assume that some sample is an SRS, so that we can
use it to make a con�dence interval, even of that assumption is not really justi�ed.

Another thing that can happen to make con�dence intervals less accurate is to choose
too small a sample sizen. We have seen that our approach to con�dence intervals relies
upon the CLT, therefore it typically needs samples of size atleast 30.

EXAMPLE 6.2.6. A survey of 463 �rst-year students at Euphoria State University [ESU]
found that the [sample] average of how long they reported studying per week was 15.3
hours. Suppose somehow we know that the population standarddeviation of hours of study
per week at ESU is 8.5 . Then we can �nd a con�dence interval at the 99% con�dence level
for the mean study per week of all �rst-year students by calculating the margin of error to
be

E == z�
L � X =

p
n = 2:576� 8:5=

p
463 = 1:01759

and then noting that the con�dence interval goes from

x � E = 15:3 � 1:01759 = 14:28241

to
x + E = 15:3 + 1:01759 = 16:31759:

Note that for this calculation to be doing what we want it to do, we must assume that
the 463 �rst-year students were an SRS out of the entire population of �rst-year students at
ESU.

Note also that what it means that we have 99% con�dence in thisinterval from 14.28241
to 16.31759 (or[14:28241; 16:31759]in interval notation) is not, in fact, that we any con-
�dence at all in those particular numbers. Rather, we have con�dence in themethod, in
the sense that if we imagine independently taking many future SRSs of size 463 and recal-
culating new con�dence intervals, then 99% of these future intervals will contain the one,
�xed, unknown� X .
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6.3. Basic Hypothesis Testing

Let's start with a motivating example, described somewhat more casually than the rest
of the work we usually do, but whose logic is exactly that of the scienti�c standard for
hypothesis testing.

EXAMPLE 6.3.1. Suppose someone has a coin which they claim is a fair coin (includ-
ing, in the informal notion of a fair coin, that successive �ips are independent of each other).
You care about this fairness perhaps because you will use thecoin in a betting game.

How can you know if the coin really is fair?

Obviously, your best approach is to start �ipping the coin and see what comes up. If
the �rst �ip shows heads[H], you wouldn't draw any particular conclusion. If the second
was also anH, again, so what? If the third was stillH, you're starting to think there's a run
going. If you got all the way to tenHs in a row, you would be very suspicious, and if the
run went to 100Hs, you would demand that some other coin (or person doing the �ipping)
be used.

Somewhere between two and 100Hs in a row, you would go from bland acceptance of
fairness to nearly complete conviction that this coin is notfair – why? After all, the person
�ipping the coin and asserting its fairness could say, correctly, that it is possible for a fair
coin to come upH any number of times in a row. Sure, you would reply, but it is very
unlikely: that is, given that the coin is fair, the conditional probability that those long runs
withoutTs would occur is very small.

Which in turn also explains how you would draw the line, between two and 100Hs
in a row, for when you thought the the improbability of that particular run of straightHs
was past the level you would be willing to accept. Other observers might draw the line
elsewhere, in fact, so there would not be an absolutely sure conclusion to the question of
whether the coin was fair or not.

It might seem that in the above example we only get a probabilistic answer to a yes/no
question (is the coin fair or not?) simply because the thing we are asking about is, by
nature, a random process: we cannot predict how any particular �ip of the coin will come
out, but the long-term behavior is what we are asking about; no surprise, then, that the
answer will involve likelihood. But perhaps other scienti�c hypotheses will have more
decisive answers, which do not invoke probability.

Unfortunately, this will not be the case, because we have seen above that it is wise to
introduce probability into an experimental situation, even if it was not there originally, in
order to avoid bias. Modern theories of science (such as quantum mechanics, and also,
although in a different way, epidemiology, thermodynamics, genetics, and many other sci-
ences) also have some amount of randomness built into their very foundations, so we should
expect probability to arise in just about every kind of data.
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Let's get a little more formal and careful about what we need to do with hypothesis
testing.

6.3.1. The Formal Steps of Hypothesis Testing.

(1) State what is the population under study.
(2) State what is the variable of interest for this population. For us in this section, that

will always be a quantitative variableX .
(3) State which is the resulting population parameter of interest.For us in this section,

that will always be the population mean� X of X .
(4) State two hypotheses about the value of this parameter. One, called thenull hy-

pothesisand writtenH0, will be a statement that the parameter of interest has a
particular value, so

H0 : � X = � 0

where� 0 is some speci�c number. The other is the interesting alternative we
are considering for the value of that parameter, and is thus called thealternative
hypothesis, writtenHa. The alternative hypothesis can have one of three forms:

Ha : � X < � 0 ;

Ha : � X > � 0 ; or

Ha : � X 6= � 0 ;

where� 0 is the same speci�c number as inH0.
(5) Gather data from an SRS and compute the sample statistic which is best related

to the parameter of interest.For us in this section, that will always be the sample
meanX

(6) Compute the following conditional probability

p = P

 
getting values of the statistic which are as extreme,

or more extreme, as the ones you did get

�
�
�
�
�

H0

!

:

This is called thep-value of the test.
(7) If thep-value is suf�ciently small – typically,p < :05or evenp < :01– announce

“We rejectH0, with p = hnumber herei .”

Otherwise, announce

“We fail to rejectH0, with p = hnumber herei .”

(8) Translate the result just announced into the language ofthe original question. As
you do this, you can say“There is strong statistical evidence that ...”if the p-value
is very small, while you should merely say something like“There is evidence
that...” if the p-value is small but not particularly so.
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Note that the hypothesesH0 andHa arestatements, not numbers. Sodon't write some-
thing likeH0 = � X = 17; you might use

H0 = “ � X = 17”

or

Ho : � X = 17

(we always use the latter in this book).

6.3.2. How Small is Small Enough, forp-values? Remember how thep-value is de-
�ned:

p = P

 
getting values of the statistic which are as extreme,

or more extreme, as the ones you did get

�
�
�
�
�

H0

!

:

In other words, if the null hypothesis is true, maybe the behavior we saw with the sample
data would sometimes happen, but if the probability is very small, it starts to seem that,
under the assumptionH0 is true, the sample behavior was a crazy �uke. If the �uke is crazy
enough, we might want simply to say that since the sample behavior actually happened, it
makes us doubt thatH0 is true at all.

For example, ifp = :5, that means that under the assumptionH0 is true, we would see
behavior like that of the sample about every other time we take an SRS and compute the
sample statistic. Not much of a surprise.

If the p = :25, that would still be behavior we would expect to see in about one out of
every four SRSs, when theH0 is true.

Whenp gets down to:1, that is still behavior we expect to see about one time in ten,
whenH0 is true. That's rare, but we wouldn't want to bet anything important on it.

Across science, in legal matters, and de�nitely for medicalstudies, we start to reject
H0 whenp < :05. After all, if p < :05andH0 is true, then we would expect to see results
as extreme as the ones we saw in fewer than one SRS out of 20.

There is some terminology for these various cut-offs.

DEFINITION 6.3.2. When we are doing a hypothesis test and get ap-value which sat-
is�es p < � , for some real number� , we say the data arestatistically signi�cant at level
� . Here the value� is called thesigni�cance levelof the test, as in the phrase“We reject
H0 at signi�cance level� ,” which we would say ifp < � .

EXAMPLE 6.3.3. If we did a hypothesis test and got ap-value ofp = :06, we would say
about it that the result was statistically signi�cant at the� = :1 level, but not statistically
signi�cant at the� = :05level. In other words, we would say“We reject the null hypothesis
at the� = :1 level,” but also“We fail to reject the null hypothesis at the� = :05level,”.
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FACT 6.3.4. The courts in the United States, as well as the majority of standard sci-
enti�c and medical tests which do a formal hypothesis test, use the signi�cance level of
� = :05.

In this chapter, when not otherwise speci�ed, we will use that value of� = :05 as a
default signi�cance level.

EXAMPLE 6.3.5. We have said repeatedly in this book that the heights of American
males are distributed likeN (69; 2:8). Last semester, a statistics student named Mohammad
Wong said he thought that had to be wrong, and decide to do a study of the question. MW
is a bit shorter than 69 inches, so his conjecture was that themean height must be less, also.
He measured the heights of all of the men in his statistics class, and was surprised to �nd
that the average of those 16 men's heights was 68 inches (he'sonly 67 inches tall, and he
thought he was typical, at least for his class1). Does this support his conjecture or not?

Let's do the formal hypothesis test.
The population that makes sense for this study would be all adult American men today

– MW isn't sure if the claim of American men's heights having apopulation mean of 69
inches wasalwayswrong, he is just convinced that it is wrongtoday.

The quantitative variable of interest on that population istheir height, which we'll call
X .

The parameter of interest is the population mean� X .
The two hypotheses then are

H0 : � X = 69 and

Ha : � X < 69;

where the basic idea in the null hypothesis is that the claim in this book of men's heights
having mean 69 is true, while the new idea which MW hopes to �ndevidence for, encoded
in alternative hypothesis, is that the true mean of today's men's heights is less than 69
inches (like him).

MW now has to make two bad assumptions: the �rst is that the 16 students in his
class are an SRS drawn from the population of interest; the second, that the population
standard deviation of the heights of individuals in his population of interest is the same
as the population standard deviation of the group of all adult American males asserted
elsewhere in this book, 2.8 . These are de�nitelybad assumptions– particularly that
MW's male classmates are an SRS of the population of today's adult American males – but
he has to make them nevertheless in order to get somewhere.

The sample mean heightX for MW's SRS of sizen = 16 is X = 68.

1When an experimenter tends to look for information which supports their prior ideas, it's calledcon�r-

mation bias– MW may have been experiencing a bit of this bias when he mistakenly thought he was average
in height for his class.
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MW can now calculate thep-value of this test, using the Central Limit Theorem. Ac-
cording to the CLT, the distribution ofX is N (69; 2:8=

p
16). Therefore thep-value is

p = P

 
MW would get values ofX which are as

extreme, or more extreme, as the ones he did get

�
�
�
�
�

H0

!

= P(X < 69) :

Which, by what we just observed the CLT tells us, is computable by

normalcdf(� 9999; 68; 69; 2:8=
p

16)

on a calculator, or

NORM.DIST(68, 69, 2.8/SQRT(16), 1)

in a spreadsheet, either of which gives a value around .07656.
This means that if MW uses the 5% signi�cance level, as we often do, the result is not

statistically signi�cant. Only at the much cruder 10% signi�cance level would MW say
that he rejects the null hypothesis.

In other words, he might conclude his project by saying

“My research collected data about my conjecture which was statistically
insigni�cant at the 5% signi�cance level but the data, signi�cant at the
weaker 10% level, did indicate that the average height of American men
is less than the 69 inches we were told it is (p = :07656).”

People who talk to MW about his study should have additional concerns about his assump-
tions of having an SRS and of the value of the population standard deviation

6.3.3. Calculations for Hypothesis Testing of Population Means. We put together
the ideas inx6.3.1 above and the conclusions of the Central Limit Theoremto summarize
what computations are necessary to perform:

FACT 6.3.6. Suppose we are doing a formal hypothesis test with variableX and param-
eter of interest the population mean� X . Suppose that somehow we know the population
standard deviation� X of X . Suppose the null hypothesis is

H0 : � X = � 0

where� 0 is a speci�c number. Suppose also that we have an SRS of sizen which yielded
the sample meanX . Then exactly one of the following three situations will apply:

(1) If the alternative hypothesis isHa : � X < � 0 then thep-value of the test can be
calculated in any of the following ways
(a) the area to the left ofX under the graph of aN (� 0; � X =

p
n) distribution,

(b) normalcdf(� 9999; X; � 0; � X =
p

n) on a calculator, or
(c) NORM.DIST(X , � 0, � X /SQRT( n), 1) on a spreadsheet.

(2) If the alternative hypothesis isHa : � X > � 0 then thep-value of the test can be
calculated in any of the following ways



122 6. BASIC INFERENCES

(a) the area to the right ofX under the graph of aN (� 0; � X =
p

n) distribution,
(b) normalcdf(X; 9999; � 0; � X =

p
n) on a calculator, or

(c) 1-NORM.DIST( X , � 0, � X /SQRT( n), 1) on a spreadsheet.
(3) If the alternative hypothesis isHa : � X 6= � 0 then thep-value of the test can be

found by using the approach in exactly one of the following three situations:
(a) If X < � 0 thenp is calculated by any of the following three ways:

(i) two times the area to the left ofX under the graph of aN (� 0; � X =
p

n)
distribution,

(ii) 2 * normalcdf(� 9999; X; � 0; � X =
p

n) on a calculator, or
(iii) 2 * NORM.DIST(X , � 0, � X /SQRT( n), 1) on a spreadsheet.

(b) If X > � 0 thenp is calculated by any of the following three ways:
(i) two times the area to the right ofX under the graph of aN (� 0; � X =

p
n)

distribution,
(ii) 2 * normalcdf(X; 9999; � 0; � X =

p
n) on a calculator, or

(iii) 2 * (1-NORM.DIST( X , � 0, � X /SQRT( n), 1)) on a spread-
sheet.

(c) If X = � 0 thenp = 1.

Note the reason that there is that multiplication by two if the alternative hypothesis is
Ha : � X 6= � 0 is that there are two directions – the distribution has two tails – in which the
values can be more extreme thanX . For this reason we have the following terminology:

DEFINITION 6.3.7. If we are doing a hypothesis test and the alternative hypothesis is
Ha : � X > � 0 or Ha : � X < � 0 then this is called aone-tailed test. If, instead, the
alternative hypothesis isHa : � X 6= � 0 then this is called atwo-tailed test.

EXAMPLE 6.3.8. Let's do one very straightforward example of a hypothesis test:
A cosmetics company �lls its best-selling 8-ounce jars of facial cream by an automatic

dispensing machine. The machine is set to dispense a mean of 8.1 ounces per jar. Uncon-
trollable factors in the process can shift the mean away from8.1 and cause either under�ll
or over�ll, both of which are undesirable. In such a case the dispensing machine is stopped
and recalibrated. Regardless of the mean amount dispensed,the standard deviation of the
amount dispensed always has value .22 ounce. A quality control engineer randomly selects
30 jars from the assembly line each day to check the amounts �lled. One day, the sample
mean isX = 8:2 ounces. Let us see if there is suf�cient evidence in this sample to indicate,
at the 1% level of signi�cance, that the machine should be recalibrated.

The population under study is all of the jars of facial cream on the day of the 8.2 ounce
sample.

The variable of interest is the weightX of the jar in ounces.
The population parameter of interest is the population mean� X of X .
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The two hypotheses then are

H0 : � X = 8:1 and

Ha : � X 6= 8:1 :

The sample mean isX = 8:2, and the sample – which we must assume to be an SRS –
is of sizen = 30.

Using the case in Fact 6.3.6 where the alternative hypothesis isHa : � X 6= � 0 and the
sub-case whereX > � 0, we compute thep-value by

2 * (1-NORM.DIST( 8:2; 8:1; :22=SQRT(30) ; 1))

on a spreadsheet, which yieldsp = :01278.
Sincep is not less than:01, we fail to rejectH0 at the� = :01 level of signi�cance.
The quality control engineer should therefore say to company management

“Today's sample, though off weight, was not statistically signi�cant at the
stringent level of signi�cance of� = :01 that we have chosen to use in
these tests, that the jar-�lling machine is in need of recalibration today
(p = :01278).”

6.3.4. Cautions.As we have seen before, the requirement that the sample we areusing
in our hypothesis test is a valid SRS is quite important. But it is also quite hard to get
such a good sample, so this is often something that can be a real problem in practice, and
something which we must assume is true with often very littlereal reason.

It should be apparent from the above Facts and Examples that most of the work in doing
a hypothesis test, after careful initial set-up, comes in computing thep-value.

Be careful of the phrasestatistically signi�cant. It does not mean that the effect is
large! There can be a very small effect, theX might be very close to� 0 and yet we might
reject the null hypothesis if the population standard deviation � X were suf�ciently small, or
even if the sample sizen were large enough that� X =

p
n became very small. Thus, oddly

enough, a statistically signi�cant result, one where the conclusion of the hypothesis test
was statistically quite certain, might not besigni�cant in the sense of mattering very much.
With enough precision, we can be very sure of small effects.

Note that the meaning of thep-value is explained above in its de�nition as a conditional
probability. Sop does notcompute the probability that the null hypothesisH0 is true, or
any such simple thing. In contrast, the Bayesian approach toprobability, which we chose
not to use in the book, in favor of the frequentist approach, does have a kind of hypothesis
test which includes something like the direct probability that H0 is true. But we did not
follow the Bayesian approach here because in many other waysit is more confusing.

In particular, one consequence of the real meaning of thep-value as we use it in this
book is that sometimes we will reject a true null hypothesisH0 just out of bad luck. In
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fact, if p is just slightly less than:05, we would rejectH0 at the� = :05 signi�cance
level even though, in slightly less than one case in 20 (meaning 1 SRS out of 20 chosen
independently), we would do this rejection even thoughH0 was true.

We have a name for this situation.

DEFINITION 6.3.9. When we reject a true null hypothesisH0 this is called atype I
error . Such an error is usually (but not always: it depends upon howthe population,
variable, parameter, and hypotheses were set up) afalse positive, meaning that something
exciting and new (or scary and dangerous) was found even though it is not really present in
the population.

EXAMPLE 6.3.10. Let us look back at the cosmetic company with a jar-�lling machine
from Example 6.3.8. We don't know what the median of the SRS data was, but it wouldn't
be surprising if the data were symmetric and therefore the median would be the same as
the sample meanX = 8:2. That means that there were at least 15 jars with 8.2 ounces of
cream in them, even though the jars are all labelled “8oz.” The company is giving way at
least:2 � 15 = 3 ounces of the very valuable cream – in fact, probably much more, since
that was simply the over�lling in that one sample.

So our intrepid quality assurance engineer might well propose to management to in-
crease the signi�cance level� of the testing regime in the factory. It is true that with a
larger � , it will be easier for simple randomness to result in type I errors, but unless the
recalibration process takes a very long time (and so resultsin fewer jars being �lled that
day), the cost-bene�t analysis probably leans towards �xing the machine slightly too often,
rather than waiting until the evidence is extremely strong it must be done.
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Exercises

EXERCISE 6.1. You buy seeds of one particular species to plant in your garden, and
the information on the seed packet tells you that, based on years of experience with that
species, the mean number of days to germination is 22, with standard deviation 2.3 days.

What is the population and variable in that information? What parameter(s) and/or
statistic(s) are they asserting have particular values? Doyou think they can really know the
actual parameter(s) and/or statistic's(s') value(s)? Explain.

You plant those seeds on a particular day. What is the probability that the �rst plant
closest to your house will germinate within half a day of the reported mean number of days
to germination – that is, it will germinate between 21.5 and 22.5 after planting?

You are interested in the whole garden, where you planted 160seeds, as well. What
is the probability that the average days to germination of all the plants in your garden is
between 21.5 and 22.5 days? How do you know you can use the Central Limit Theorem to
answer this problem – what must you assume about those 160 seeds from the seed packet
in order for the CLT to apply?

EXERCISE 6.2. You decide to expand your garden and buy a packet of different seeds.
But the printing on the seed packet is smudged so you can see that the standard deviation
for the germination time of that species of plant is 3.4 days,but you cannot see what the
mean germination time is.

So you plant 100 of these new seeds and note how long each of them takes to germinate:
the average for those 100 plants is 17 days.

What is a 90% con�dence interval for the population mean of the germination times
of plants of this species? Show and explain all of your work. What assumption must you
make about those 100 seeds from the packet in order for your work to be valid?

What does it mean that the interval you gave had90% con�dence? Answer by talking
about what would happen if you bought many packets of those kinds of seeds and planted
100 seeds in each of a bunch of gardens around your community.

EXERCISE 6.3. An SRS of size 120 is taken from the student population atthe very
large Euphoria State University [ESU], and their GPAs are computed. The sample mean
GPA is 2.71 . Somehow, we also know that the population standard deviation of GPAs at
ESU is .51 . Give a con�dence interval at the 90% con�dence level for the mean GPA of
all students at ESU.

You show the con�dence interval you just computed to a fellowstudent who is not
taking statistics. They ask, “Does that mean that 90% of students at ESU have a GPA
which is betweena andb?” wherea andbare the lower and upper ends of the interval you
computed. Answer this question, explaining why if the answer is yesand both why not and
what is a better way of explaining this 90% con�dence interval, if the answer isno.
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EXERCISE6.4. The recommended daily calorie intake for teenage girlsis 2200 calories
per day. A nutritionist at Euphoria State University believes the average daily caloric intake
of girls in her state to be lower because of the advertising which uses underweight models
targeted at teenagers. Our nutritionist �nds that the average of daily calorie intake for a
random sample of sizen = 36 of teenage girls is 2150.

Carefully set up and perform the hypothesis test for this situation and these data. You
may need to know that our nutritionist has been doing studiesfor years and has found that
the standard deviation of calorie intake per day in teenage girls is about 200 calories.

Do you have con�dence the nutritionist's conclusions? Whatdoes she need to be care-
ful of, or to assume, in order to get the best possible results?

EXERCISE 6.5. The medication most commonly used today for post-operative pain
relieve after minor surgery takes an average of 3.5 minutes to ease patients' pain, with a
standard deviation of 2.1 minutes. A new drug is being testedwhich will hopefully bring
relief to patients more quickly. For the test, 50 patients were randomly chosen in one
hospital after minor surgeries. They were given the new medication and how long until
their pain was relieved was timed: the average in this group was 3.1 minutes. Does this
data provide statistically signi�cant evidence, at the 5% signi�cance level, that the new
drug acts more quickly than the old?

Clearly show and explain all your set-up and work, of course!

EXERCISE 6.6. The average household size in a certain region several years ago was
3.14 persons, while the standard deviation was .82 persons.A sociologist wishes to test,
at the 5% level of signi�cance, whether the mean household size is different now. Perform
the test using new information collected by the sociologist: in a random sample of 75
households this past year, the average size was 2.98 persons.

EXERCISE 6.7. A medical laboratory claims that the mean turn-around time for per-
formance of a battery of tests on blood samples is 1.88 business days. The manager of
a large medical practice believes that the actual mean is larger. A random sample of 45
blood samples had a mean of 2.09 days. Somehow, we know that the population standard
deviation of turn-around times is 0.13 day. Carefully set upand perform the relevant test at
the 10% level of signi�cance. Explain everything, of course.
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Ha , alternative hypothesis, 118–123
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and standard deviation� X , 78, 112, 114, 115
n, sample size, 6, 123

P(A j B ), conditional probability, 67

Q1, �rst quartile, 22, 26–28

Q3, third quartile, 22, 26–28
r , correlation coef�cient, 36

Sx , sample standard deviation, 23, 25, 93, 94

S2
x , sample variance, 23, 25

� , summation notation, 17
� X , population standard deviation, 24, 25, 93, 94,

111, 112, 114, 116, 120, 121, 123

� X
2, population variance, 24, 25

x, sample mean, 18, 19, 23, 24, 40, 93–95,

112–116, 118, 120–124

xmax , maximum value in dataset, 22, 26–28
xmin , minimum value in dataset, 22, 26–28

by, y values on an approximating line, 40

z�
L , critical value, 115

abortion, 95

addition rule for disjoint events, 57
Addition Rule for General Events, 63

aggregated experimental results, for

con�dentiality, 105
alternative hypothesis,Ha , 118–123

American Medical Association, 104

amorphous, for scatterplots or associations, 35

and, for events, 56
anecdote, not the singular of data, 52

anonymization of experimental results, 105

Apollo the physician, 104

Asclepius, 104
“at random”, 65, 74

autonomy, value for human test subjects, 104,

105
AVERAGE, sample mean in spreadsheets, 41

average

see: mean, 18, 112

bar chart, 7
relative frequency, 7, 8

Bayesian, 53, 123

bias, 52, 91, 95, 96, 110, 117

biased coin, 64
bins, in a histogram, 12

bivariate data, 33

bivariate statistics, 2

blinded experiment, 101
boxplot, box-and-whisker plot, 27, 32

showing outliers, 28

butter�y in the Amazon rainforest, 54

Calc [LibreOf�ce ], 41, 42, 47, 83, 113, 121–123

calculator, 24, 40, 78, 82, 89, 121, 122
categorical variable, 6

causality, 91, 102, 103, 110
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causation, 46

center of a histogram, dataset, or distribution, 15
Central Limit Theorem, CLT, 110–114, 121

classes, in a histogram, 12

Clemens, Samuel [Mark Twain], ix
CLT, Central Limit Theorem, 110–114, 121

coin
biased, 64

fair, 64, 69, 70, 117

complement,E c, 56–58, 60
conditional probability,P(A j B ), 67, 123

con�dence interval, 110, 111

con�dence interval for� X with con�dence level
L , 115, 116

con�dence level, 115, 116
con�rmation bias, 120

confounded, 102, 103

continuous random variable, 69, 90
control group, 100, 102

CORREL, correlation coef�cient in spreadsheets,

41
correlation coef�cient,r , 36

correlation is not causation
but it sure is a hint, 46

countably in�nite, 69

critical value,z�
L , 115

data, not the plural of anecdote, 52
dataset, 7

default signi�cance level, 120

de�nition, in mathematics, 2
democracy, 96

density function, for a continuous random

variable, 74, 77, 112
dependent variable, 33

deterministic, 34
direction of a linear association, 35

disaggregation of experimental results, 105

discrete random variable, 69
disjoint events, 57, 59, 62, 63

Disraeli, Benjamin, ix

distribution, 15, 70, 73, 112
do no harm, 104

double-blind experiment, 101

Empirical Rule, 83

empty set,; , 56

epidemiology, 117

equiprobable, 65

ethics, experimental, 91, 104
even number, de�nition, 2

event, 55, 57–63

Excel [Microsoft ], 41, 83, 113, 121–123

expectation, 72

expected value, 72

experiment, 99, 102, 103

experimental design, 52, 91

experimental ethics, 52, 91
experimental group, 100, 102

experimental treatment, 99

explanatory variable, 33

extrapolation, 47

failure to rejectH0, 118, 119, 123

fair coin, 64, 69, 70, 117

fair, in general, 65

fake news, ix

false positive, 124

�nite probability models, 63
�rst quartile, 22

�rst, do no harm, 104

�ve-number summary, 27

free will, 104

frequency, 7

relative, 7

frequentist approach to probability, 53, 123

Gallup polling organization, 96

Gauss, Carl Friedrich, 78
Gaussian distribution, 78

genetics, 117

“given,” the known event in conditional

probability, 67

Great Recession, 20

Hippocrates of Kos, 104

Hippocratic Oath, 104, 105

histogram, 12, 13, 32
relative frequency, 14

How to Lie with Statistics, ix

Huff, Darrell, ix

Hygieia, 104
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hypothesis, 124

alternative,Ha , 118–123

null, H0, 118–121, 123, 124

hypothesis test, 110, 111, 117, 121–123

imperfect knowledge, 66

income distribution, 20

independent events, 65, 67, 112, 117, 124

independent variable, 33

individual in a statistical study, 5

inferential statistics, 110

informed consent, 105

insensitive to outliers, 20, 23, 25, 26

Insert Trend Line , display LSRL in
spreadsheet scatterplots, 42

Institutional Review Board, IRB, 106

inter-quartile range,IQR , 23, 25

interpolation, 43

intersection,\ , 56, 57, 60, 61

IRB, Institutional Review Board, 106

Kernler, Dan, 83

Law of Large Numbers, 94

leaf, in stemplot, 11

least squares regression line, LSRL, 40

left-skewed histogram, dataset, or distribution, 21

LibreOf�ce Calc , 41, 42, 47, 83, 113, 121–123

lies, ix

lies, damned, ix

linear association, 35

lower half data, 22

LSRL, least squares regression line, 40

lurking variable, 102, 103

margin of error, 116

mean, 18–21, 25, 31, 112, 122

population, 18, 93–95, 110–112, 114–116,
118, 120–122

sample, 18, 19, 23, 40, 93–95, 112–116, 118,

120–124

media, 28

median, 18, 20, 21, 23, 25, 27, 31, 124

Microsoft Excel, 41, 83, 113, 121–123

mode, 17, 19, 23, 31

MS Excel, 41, 83, 113, 121–123

multi-variable statistics, 2

multimodal histogram, dataset, or distribution, 15

mutually exclusive events, 57

negative linear association, 35

news, fake, ix

non-deterministic, 34

NORM.DIST, the cumulative Normal distribution

in spreadsheets, 83, 113, 121–123
Normal distribution with mean� X and standard

deviation� X , 77, 112

normalcdf, the cumulative Normal distribution
on aTI-8x calculator, 82, 121, 122

Normally distributed with mean� X and standard

deviation� X , N (� X ; � X ), 78, 112, 114, 115

not, for an event, 56

null hypothesis,H0, 118–121, 123, 124

objectivity, 52

observational studies, 103

observational study, 99, 102

one-tailed test, 122

one-variable statistics, 2

or, for events, 56
outcome of an experiment, 55

outlier, 20, 25, 26, 28

bivariate, 45

p-value of a hypothesis test, 118, 119, 123

Panacea, 104
parameter, population, 93–95, 110, 122, 124

personally identi�able information, PII, 105

photon, 54

pie chart, 9

pig, yellow, 17

PII, personally identi�able information, 105

placebo, 100

Placebo Effect, 100, 104

placebo-controlled experiment, 101
population mean,� X , 18, 93–95, 110–112, 114,

118, 120–122

population of a statistical study, 5, 93, 112, 122,
124

population parameter, 93–95, 110, 122, 124

population proportion, 93–95

population size,N , 6
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population standard deviation,� X , 24, 25, 93, 94,

111, 112, 114, 116, 120, 121, 123

population variance,� X
2, 24, 25

positive linear association, 35

presidential approval ratings, 96

primum nil nocere
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probability density function, for a continuous

random variable, 74, 77, 112

probability model, 57

probability theory, 52, 110

proof, 2

proportion

population, 93–95

sample, 94–96

push-polling, 99

quantitative variable, 6, 11, 17, 93, 94, 110–112,
114, 116, 118, 120

quantum mechanics, 54, 117

quartile, 22, 26, 27, 31

QUARTILE.EXC, quartile computation in
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QUARTILE.INC , quartile computation in
spreadsheets, 25

random variable, RV, 69, 112

randomized experiment, 101

randomized, controlled trial, RCT, 91, 101

randomized, placebo-controlled, double-blind

experiment, 52, 91

randomness, 52, 95, 110, 117, 124

range, 22, 25, 31, 32

RCT, randomized, controlled trial, 52, 101

rejection ofH0, 118, 119, 121, 123, 124

relative frequency, 7

representative sample, 95

residual, for data values and LSRLs, 39

response variable, 33

right-skewed histogram, dataset, or distribution,
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rise over run,seeslope of a line

RV, random variable, 69, 112

sample, 6, 110, 112, 119, 122–124

sample mean,x, 18, 19, 23, 40, 93–95, 112–116,

118, 120–124

sample proportion, 94–96

sample size,n, 6, 123

sample space, 55, 57, 58, 60–63

sample standard deviation,Sx , 23, 25, 93, 94

sample statistic, 93, 95

sample variance,S2
x , 23, 25

sampling error, 116

scatterplot, 35

sensitive to outliers, 20–22, 25, 26, 28, 45

shape

histogram, 15

scatterplot, 35

Show Equation , display LSRL equation in
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signi�cance level, 119–124

default, 120, 121

simple random sample, SRS, 97, 98, 110–116,
118–121, 123–125

Simpson's Paradox, 48

skewed histogram, dataset, or distribution, 15, 21
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right, 21

slope of a line, 35, 39
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118–121, 123–125

standard deviation, 23–25, 31, 32, 93, 94, 111,

112, 114, 116, 120–123

standard Normal distribution,N (0; 1), 81

standard Normal RV, 81

standardizing a Normal RV, 82, 83

statistic, sample, 93, 95

statistically indistinguishable, 102

statistically signi�cant, for data in a hypothesis
test, 119, 121, 123

STDEV.P, population standard deviation in

spreadsheets, 25

STDEV.S, sample standard deviation in

spreadsheets, 25, 41

stem, in stemplot, 11

stem-and-leaf plot, stemplot, 11
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strength of an association, 35
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strong statistical evidence, 118

subset,� , 55, 57

sugar pill, 100

summation notation,� , 17

survey methodology, 91

symmetric histogram, dataset, or distribution, 15,

124

test of signi�cance, 110, 111

thermodynamics, 117

third quartile, 22

treatment, experimental, 99

Tufte, Edward, 46

Twain, Mark [Samuel Clemens], ix

two-tailed test, 122

type I error, 124

unethical human experimentation, 104

uniform distribution on[xmin ; xmax ], 75

unimodal histogram, dataset, or distribution, 15

union,[ , 56, 57, 60
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VAR.P, population variance in spreadsheets, 25
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”We fail to reject the null hypothesisH0.”, 118,

119, 123
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weak association, 35

wording effects, 95, 107

y-intercept of a line, 39
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